Skip to main content

Benign Effusions

  • Chapter
  • First Online:

Abstract

Serous effusion is a common finding in clinical practice and may be the sign of a systemic disease or a local disorder. Most of the clinically detected effusions, both in adults and children, are associated with reactive conditions. Several laboratory tests, such as protein content of the fluid, lactate dehydrogenase and cholesterol level, and adenosine deaminase activity, are used in the evaluation of serous effusions, shedding valuable insight into the etiology and risk of malignancy. However, to exclude or to diagnose a malignant effusion, cytological examination is frequently needed.

Effusions contain a variety of cells depending on the underlying pathology. Mesothelial cells, as the local elements, are almost always present in the effusions. The other nonneoplastic cells that are commonly encountered are macrophages and blood-borne cells. Some incidental cellular and noncellular elements may also be observed. The predominant cell type in an effusion may provide a clue for the etiology.

Mesothelial cells are characterized by centrally/paracentrally located round to oval nuclei. Their chromatin is finely granular; the nuclear membrane is usually prominent and smooth. Nucleoli may be distinct, but the presence of macronucleoli is not an expected finding. The nuclear-to-cytoplasmic ratio of mesothelial cells varies. Binucleation is a common feature; multinucleated forms may also occur. Mesothelial cells have a characteristic two-tone stained dense cytoplasm. They may contain multiple or single vacuoles. Large hydropic vacuoles displacing the nuclei toward the edge may mimic signet ring cells. Mesothelial groups typically have knobby contours and show slit-like spaces between the cells called “windows.” Cell-in-cell arrangements are common. Mitosis may be seen. When serous membranes are irritated and injured, mesothelial cells proliferate and may show both cellular and structural atypia. There are several well-known conditions causing atypia in mesothelial cells so that clinical information is important in evaluation.

Differentiating reactive mesothelial proliferations from metastatic carcinomas may be difficult in some cases due to either atypical features in mesothelial cells or bland appearance of some carcinomas. The pattern and the cellular features should be evaluated together in such cases, and morphological findings should be combined with immunohistochemistry if the diagnosis is still in doubt. Ancillary tests are needed also for the differential diagnosis between benign and malignant mesothelial proliferations. Malignant mesotheliomas generally do not show clear-cut malignant nuclear features, and pattern analysis is more important than individual cell characteristics for recognizing malignant mesotheliomas in serous effusions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shidham VB. Introduction. In: Shidham VB, Atkinson BF, editors. Cytopathologic diagnosis of serous fluids. Chap. 1. Philadelphia: Saunders Elsevier; 2007. p. 1–17.

    Google Scholar 

  2. Tao LC. Etiology of effusions. In: Tao LC, editor. Cytopathology of malignant effusions. Johnston WW series ed. ASCP theory and practice of cytopathology. vol 6. Chap. 1. Chicago: ASCP Press; 1996. p. 1–55.

    Google Scholar 

  3. Sahn SA. The value of pleural fluid analysis. Am J Med Sci. 2008;335:7–15.

    Article  PubMed  Google Scholar 

  4. Wong JW, Pitlik D, Abdul-Karim FW. Cytology of pleural, peritoneal and pericardial fluids in children. A 40-year summary. Acta Cytol. 1997;41:467–73.

    Article  CAS  PubMed  Google Scholar 

  5. DeMay RM. Fluids. In: DeMay RM, editor. The art and science of cytopathology. vol 1. Chap. 8. Chicago: ASCP Press; 1996. p. 257–325.

    Google Scholar 

  6. Porcel JM. Pearls and myths in pleural fluid analysis. Respirology. 2011;16:44–52.

    Article  PubMed  Google Scholar 

  7. Heffner JE. Discriminating between transudates and exudates. Clin Chest Med. 2006;27:241–52.

    Article  PubMed  Google Scholar 

  8. Yousef MM, Michael CW. Body cavity fluids. In: Gattuso P, Reddy VB, Masood S, editor. Differential diagnosis in cytopathology. Chap. 3. New York: Cambridge University Press; 2010. p. 99–150.

    Google Scholar 

  9. Sahn SA. Getting the most from pleural fluid analysis. Respirology. 2012;17:270–7.

    Article  PubMed  Google Scholar 

  10. Wilcox ME, Chong CAKY, Stanbrook MB, Tricco AC, Wong C, Straus SE. Does this patient have an exudative pleural effusion? The rational clinical examination systematic review. JAMA. 2014;311:2422–31.

    Article  CAS  PubMed  Google Scholar 

  11. Light RW, Macgregor MI, Luchsinger PC, Ball WC Jr. Pleural effusion: the diagnostic separation of transudates and exudates. Ann Intern Med. 1972;77:507–13.

    Article  CAS  PubMed  Google Scholar 

  12. Romero-Candeira S, Hernandez L. The separation of transudates and exudates with particular reference to the protein gradient. Curr Opin Pulm Med. 2004;10:294–8.

    Article  PubMed  Google Scholar 

  13. Porcel JM, Azzopardi M, Koegelenberg CF, Maldonado F, Rahman NM, Lee YCG. The diagnosis of pleural effusions. Expert Rev Respir Med. 2015;9:801–15.

    Article  CAS  PubMed  Google Scholar 

  14. Huggins JT. Chylothorax and cholesterol pleural effusion. Semin Respir Crit Care Med. 2010;31:743–50.

    Article  PubMed  Google Scholar 

  15. Light RW. Update on tuberculous pleural effusion. Respirology. 2010;15:451–8.

    Article  PubMed  Google Scholar 

  16. Porcel JM, Esquerda A, Bielsa S. Diagnostic performance of adenosine deaminase activity in pleural fluid: a single center experience with over 2100 consecutive patients. Eur J Intern Med. 2010;21:419–23.

    Article  CAS  PubMed  Google Scholar 

  17. Antony VB, Godbey SW, Kunkel SL, et al. Recruitment of inflammatory cells to the pleural space. Chemotactic cytokines, IL-8, and monocyte chemotactic peptide-1 in human pleural fluids. J Immunol. 1993;151:7216–23.

    PubMed  CAS  Google Scholar 

  18. Sherr HP, Light RW, Merson MH, Wolf RO, Taylor LL, Hendrix TR. Origin of pleural fluid amylase in esophageal rupture. Ann Intern Med. 1972;76:985–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kramer MR, Saldana MJ, Cepero RJ, Pitchenik AE. High amylase levels in neoplasm-related pleural effusion. Ann Intern Med. 1989;110:567–9.

    Article  CAS  PubMed  Google Scholar 

  20. Villena V, López-Encuentra A, García-Luján R, Echave-Sustaeta J, Martínez CJ. Clinical implications of appearance of pleural fluid at thoracentesis. Chest. 2004;125:156–9.

    Article  PubMed  Google Scholar 

  21. Light RW. Clinical practice. Pleural effusion. N Engl J Med. 2002;346:1971–7.

    Article  PubMed  Google Scholar 

  22. Maldonado F, Hawkins FJ, Daniels CE, Doerr CH, Decker PA, Ryu JH. Pleural fluid characteristics of chylothorax. Mayo Clin Proc. 2009;84:129–33.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Creaney J, Dicka IM, Robinson BW. Comparison of mesothelin and fibulin-3 in pleural fluid and serum as markers in malignant mesothelioma. Curr Opin Pulm Med. 2015;21:352–6.

    Article  CAS  PubMed  Google Scholar 

  24. Psallidas I, Kalomenidis I, Porcel JM, Robinson BW, Stathopoulos GT. Malignant pleural effusion: from bench to bedside. Eur Respir Rev. 2016;25:189–98.

    Article  PubMed  Google Scholar 

  25. Rooper LM, Ali SZ, Olson MT. A minimum fluid volume of 75 mL is needed to ensure adequacy in a pleural effusion: a retrospective analysis of 2540 cases. Cancer (Cancer Cytopathol). 2014;122:657–65.

    Article  Google Scholar 

  26. Porcel JM, Esquerda A, Vives M, Bielsa S. Etiology of pleural effusions: analysis of more than 3,000 consecutive thoracenteses. Arch Bronconeumol. 2014;50:161–5.

    Article  PubMed  Google Scholar 

  27. Pereira TC, Saad RS, Liu Y, Silverman JF. The diagnosis of malignancy in effusion cytology: a pattern recognition approach. Adv Anat Pathol. 2006;13:174–84.

    Article  PubMed  Google Scholar 

  28. Stevens MW, Leong ASY, Fazzalari NL, Dowling KD, Henderson DW. Cytopathology of malignant mesothelioma: a stepwise logistic regression analysis. Diagn Cytopathol. 1992;8:333–41.

    Article  CAS  PubMed  Google Scholar 

  29. Boerner SL. Mimicry and pitfalls in effusion cytology. Pathol Case Rev. 2006;11:85–91.

    Article  Google Scholar 

  30. Gordon HY, Sack MJ, Baloch ZW, DeFrias DVS, Gupta PK. Occurrence of intercellular spaces (windows) in metastatic adenocarcinoma in serous fluids: a cytomorphologic, histochemical and ultrastructural study. Diagn Cytopathol. 1999;20:115–9.

    Article  Google Scholar 

  31. Murugan P, Siddaraju N, Habeebullah S, Basu D. Significance of intercellular spaces (windows) in effusion fluid cytology: a study of 46 samples. Diagn Cytopathol. 2008;36:628–32.

    Article  PubMed  Google Scholar 

  32. Selvaggi SM. Diagnostic pitfalls of peritoneal washing cytology and the role of cell blocks in their diagnosis. Diagn Cytopathol. 2003;28:335–41.

    Article  PubMed  Google Scholar 

  33. Bedrossian CWM. Diagnostic problems in serous effusions. Diagn Cytopathol. 1998;19:131–7.

    Article  CAS  PubMed  Google Scholar 

  34. Ordonez NG. What are the current best immunohistochemical markers for the diagnosis of epithelioid mesothelioma? A review and update. Hum Pathol. 2007;38:1–16.

    Article  CAS  PubMed  Google Scholar 

  35. Metzgeroth G, Kuhn C, Schultheis B, Hehlmann R, Hastka J. Diagnostic accuracy of cytology and immunocytology in carcinomatous effusions. Cytopathology. 2008;19:205–11.

    Article  CAS  PubMed  Google Scholar 

  36. Grefte JM, de Wilde PC, de Salet-van Pol MR, Tomassen M, Raaymakers-van Geloof WL, Bulten J. Improved identification of malignant cells in serous effusions using a small, robust panel of antibodies on paraffin-embedded cell suspensions. Acta Cytol. 2008;52:35–44.

    Article  PubMed  Google Scholar 

  37. Das DK. Serous effusions in malignant lymphomas: a review. Diagn Cytopathol. 2006;34:335–47.

    Article  PubMed  Google Scholar 

  38. Valdes L, Alvarez D, Valle JM, Pose A, Jose ES. The etiology of pleural effusions in an area with high incidence of tuberculosis. Chest. 1996;109:158–62.

    Article  CAS  PubMed  Google Scholar 

  39. Hampson C, Lemos JA, Klein JS. Diagnosis and management of parapneumonic effusions. Semin Respir Crit Care Med. 2008;29:414–26.

    Article  PubMed  Google Scholar 

  40. Cugell DW, Kamp DW. Asbestos and the pleura. Chest. 2004;125:1103–17.

    Article  PubMed  Google Scholar 

  41. Krenke R, Nasilowski J, Korczynski P, et al. Incidence and aetiology of eosinophilic pleural effusion. Eur Respir J. 2009;34:1111–7.

    Article  CAS  PubMed  Google Scholar 

  42. Rubins JB, Rubins HB. Etiology and prognostic significance of eosinophilic pleural effusions. A prospective study. Chest. 1996;110:1271–4.

    Article  CAS  PubMed  Google Scholar 

  43. Adelman M, Albelda SM, Gottlieb J, Haponik EF. Diagnostic utility of pleural fluid eosinophilia. Am J Med. 1984;77:915–20.

    Article  CAS  PubMed  Google Scholar 

  44. Krishnan S, Statsinger AL, Kleinman M, Bertoni MA, Sharma P. Eosinophilic pleural effusion with Charcot-Leyden crystals. Acta Cytol. 1983;27:529–32.

    PubMed  CAS  Google Scholar 

  45. Kumar NB, Naylor B. Megakaryocytes in pleural and peritoneal fluids: prevalence, significance, morphology and cytohistological correlation. J Clin Pathol. 1980;33:1153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bowling MR, Cauthen CG, Perry CD, et al. Pulmonary extramedullary hematopoiesis. J Thorac Imaging. 2008;23:138–41.

    Article  PubMed  Google Scholar 

  47. Koch M, Kurian EM. Pleural fluid extramedullary hematopoiesis case report with review of the literature. Diagn Cytopathol. 2016;44:41–4.

    Article  PubMed  Google Scholar 

  48. Kobayashi TK, Moritani S, Urabe M, et al. Cytologic diagnosis of endosalpingiosis with pregnant women presenting in peritoneal fluid: a case report. Diagn Cytopathol. 2004;30:422–5.

    Article  PubMed  Google Scholar 

  49. Kuritzkes DR, Rein M, Horowitz S, et al. Detached ciliary tufts mistaken for peritoneal parasites: a warning. Rev Infect Dis. 1988;10:1044–7.

    Article  CAS  PubMed  Google Scholar 

  50. Sidawy MK, Chandra P, Oertel YC. Detached ciliary tufts in female peritoneal washings. A common finding. Acta Cytol. 1987;31:841–4.

    PubMed  CAS  Google Scholar 

  51. Risberg B, Davidson B, Dong HP, Nesland JM, Berner A. Flow cytometric immunophenotyping of serous effusions and peritoneal washings: comparison with immunocytochemistry and morphological findings. J Clin Pathol. 2000;53:513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shield P. Peritoneal washing cytology. Cytopathology. 2004;15:131–41.

    Article  CAS  PubMed  Google Scholar 

  53. Bharani V, Singh P, Gupta N, Srinivasan R. Significance of flower pot cells in effusion cytology. Diagn Cytopathol. 2017;45:925–7.

    Article  PubMed  Google Scholar 

  54. Parwani AV, Chan TY, Ali SZ. Significance of psammoma bodies in serous cavity fluid: a cytopathologic analysis. Cancer. 2004;102:87–91.

    Article  PubMed  Google Scholar 

  55. Natanzon A, Kronzon I. Pericardial and pleural effusions in congestive heart failure-anatomical, pathophysiologic, and clinical considerations. Am J Med Sci. 2009;338:211–6.

    Article  PubMed  Google Scholar 

  56. Porcel JM. Pleural effusions from congestive heart failure. Semin Respir Crit Care Med. 2010;31:689–97.

    Article  PubMed  Google Scholar 

  57. Berger HW, Rammohan G, Neff MS, Buhain WJ. Uremic pleural effusion. Ann Intern Med. 1975;82:362–4.

    Article  CAS  PubMed  Google Scholar 

  58. Piraino B, Sheth H. Peritonitis—does peritoneal dialysis modality make a difference? Blood Purif. 2010;29:145–9.

    Article  PubMed  Google Scholar 

  59. Ejaz AA, Fitzpatrick PM, Durkin AJ, et al. Pathophysiology of peritoneal fluid eosinophilia in peritoneal dialysis patients. Nephron. 1999;81:125–30.

    Article  CAS  PubMed  Google Scholar 

  60. Han SH, Reynolds TB, Fong TL. Nephrogenic ascites. Analysis of 16 cases and review of the literature. Medicine (Baltimore). 1998;77:233–45.

    Article  CAS  Google Scholar 

  61. Browne GW, Pitchumoni CS. Pathophysiology of pulmonary complications of acute pancreatitis. World J Gastroenterol. 2006;12:7087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pai CG, Suvarna D, Bhat G. Endoscopic treatment as first-line therapy for pancreatic ascites and pleural effusion. J Gastroenterol Hepatol. 2009;24:1198–202.

    Article  PubMed  Google Scholar 

  63. Light RW. Pleural effusion in pulmonary embolism. Semin Respir Crit Care Med. 2010;31:716–22.

    Article  PubMed  Google Scholar 

  64. Baumann MH, Nolan R, Petrini M, Lee YC, Light RW, Schneider E. Pleural tuberculosis in the United States: incidence and drug resistance. Chest. 2007;131:1125–32.

    Article  PubMed  Google Scholar 

  65. Udwadia ZF, Sen T. Pleural tuberculosis: an update. Curr Opin Pulm Med. 2010;16:399–406.

    Article  PubMed  Google Scholar 

  66. Skouras VS, Kalomenidis I. Pleural fluid tests to diagnose tuberculous pleuritic. Curr Opin Pulm Med. 2016;22:367–77.

    Article  PubMed  Google Scholar 

  67. Trajman A, Kaisermann C, Luiz RR, et al. Pleural fluid ADA, IgA-ELISA and PCR sensitivities for the diagnosis of pleural tuberculosis. Scand J Clin Lab Invest. 2007;67:877–84.

    Article  CAS  PubMed  Google Scholar 

  68. Valdes L, San-Jose E, Ferreiro L, Golpe A, Gonzales-Barcala FJ, Toubes ME, et al. Predicting malignant and tuberculous pleural effusions through demographics and pleural fluid analysis of patients. Clin Respir J. 2015;9:203–13.

    Article  CAS  PubMed  Google Scholar 

  69. Ellison E, Lapuerta P, Martin SE. Cytologic features of mycobacterial pleuritis: logistic regression and statistical analysis of a blinded, case-controlled study. Diagn Cytopathol. 1998;19:173–6.

    Article  CAS  PubMed  Google Scholar 

  70. Lau KY. Numerous mesothelial cells in tuberculous pleural effusions. Chest. 1989;96:438–9.

    Article  CAS  PubMed  Google Scholar 

  71. Chou CW, Chang SC. Pleuritis as a presenting manifestation of rheumatoid arthritis: diagnostic clues in pleural fluid cytology. Am J Med Sci. 2002;323:158–61.

    Article  PubMed  Google Scholar 

  72. Avnon LS, Abu-Shakra M, Flusser D, Heimer D, Sion-Vardy N. Pleural effusion associated with rheumatoid arthritis: what cell predominance to anticipate? Rheumatol Int. 2007;27:919–25.

    Article  CAS  PubMed  Google Scholar 

  73. Naylor B. The pathognomonic cytologic picture of rheumatoid pleuritis. Acta Cytol. 1990;34:465–73.

    PubMed  CAS  Google Scholar 

  74. Brucato A, Tombini V, Guffanti C. Clinical image: comet cells in rheumatoid arthritis. Arthritis Rheum. 2006;54:243.

    Article  PubMed  Google Scholar 

  75. Ishiguro N, Tomino Y, Fujito K, Nakayama S, Koide H. A case of massive ascites due to lupus peritonitis with a dramatic response to steroid pulse therapy. Jpn J Med. 1989;28:608–11.

    Article  CAS  PubMed  Google Scholar 

  76. Ruiz-Argüelles A, Alarcón-Segovia D. Novel facts about an old marker: the LE cell. Scand J Clin Lab Invest Suppl. 2001;235:31–7.

    PubMed  Google Scholar 

  77. Gulhane S, Gangane N. Detection of lupus erythematosus cells in pleural effusion: an unusual presentation of systemic lupus erythematosus. J Cytol. 2012;29:77–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Reda MG, Baigelman W. Pleural effusion in systemic lupus erythematosus. Acta Cytol. 1980;24:553–7.

    PubMed  CAS  Google Scholar 

  79. Wang DY, Chang DB, Kuo SH, et al. Systemic lupus erythematosus presenting as pleural effusion: report of a case. J Formos Med Assoc. 1995;94:746–9.

    PubMed  CAS  Google Scholar 

  80. Park JY, Malik A, Dumoff KL, Gupta PK. Case report and review of lupus erythematosus cells in cytology fluids. Diagn Cytopathol. 2007;35:806–9.

    Article  PubMed  Google Scholar 

  81. de Torres EF, Guevara EC. Pleuritis by radiation: report of two cases. Acta Cytol. 1981;25:427–9.

    Google Scholar 

  82. von Haam E. The effect of chemotherapy and radiotherapy upon the cells of transudates and exudates. Monogr Clin Cytol. 1977;5:93–123.

    Article  Google Scholar 

  83. Wojno KJ, Olson JL, Sherman ME. Cytopathology of pleural effusions after radiotherapy. Acta Cytol. 1994;38:1–8.

    PubMed  CAS  Google Scholar 

  84. Kim NI, Kim GE, Lee JS. Diagnostic usefulness of Claudin-3 and Claudin-4 for immunocytochemical differentiation between metastatic adenocarcinoma cells and reactive mesothelial cells in effusion cell blocks. Acta Cytol. 2016;60(3):232–9.

    Article  CAS  PubMed  Google Scholar 

  85. Zhu W, Michael CW. WT1, monoclonal CEA, TTF1, and CA125 antibodies in the differential diagnosis of lung, breast, and ovarian adenocarcinomas in serous effusions. Diagn Cytopathol. 2007;35:370–5.

    Article  PubMed  Google Scholar 

  86. Pomjanski N, Grote HJ, Doganay P, Schmiemann V, Buckstegge B, Böcking A. Immunocytochemical identification of carcinomas of unknown primary in serous effusions. Diagn Cytopathol. 2005;33:309–15.

    Article  PubMed  Google Scholar 

  87. Pu RT, Pang Y, Michael CW. Utility of WT-1, p63, MOC31, mesothelin, and cytokeratin (K903 and CK5/6) immunostains in differentiating adenocarcinoma, squamous cell carcinoma, and malignant mesothelioma in effusions. Diagn Cytopathol. 2008;36:20–5.

    Article  PubMed  Google Scholar 

  88. Westfall DE, Fan X, Marchevsky AM. Evidence-based guidelines to optimize the selection of antibody panels in cytopathology: pleural effusions with malignant epithelioid cells. Diagn Cytopathol. 2010;38:9–14.

    PubMed  Google Scholar 

  89. Whitaker D. Cytopathology of malignant mesothelioma. Cytopathology. 2000;11:139–51.

    Article  CAS  PubMed  Google Scholar 

  90. Davidson B, Nielsen S, Christensen J, et al. The role of desmin and N-cadherin in effusion cytology: a comparative study using established markers of mesothelial and epithelial cells. Am J Surg Pathol. 2001;25:1405–12.

    Article  CAS  PubMed  Google Scholar 

  91. Saad RS, Cho P, Liu YL, Silverman JF. The value of epithelial membrane antigen expression in separating benign mesothelial proliferation from malignant mesothelioma. Diagn Cytopathol. 2005;32:156–9.

    Article  PubMed  Google Scholar 

  92. Kitazume H, Kitamura K, Mukai K, et al. Cytologic differential diagnosis among reactive mesothelial cells, malignant mesothelioma, and adenocarcinoma: utility of combined E-cadherin and calretinin immunostaining. Cancer. 2000;90:55–60.

    Article  CAS  PubMed  Google Scholar 

  93. Hasteh F, Grace YL, Weidner N, Michael CW. The use of immuno-histochemistry to distinguish reactive mesothelial cells from malignant mesothelioma in cytologic effusions. Cancer Cytopathol. 2010;118:90–6.

    Article  PubMed  Google Scholar 

  94. Andrici J, Sheen A, Sioson L, Wardell K, Clarkson A, Watson N, et al. Loss of expression of BAP1 is a useful adjunct, which strongly supports the diagnosis of mesothelioma in effusion cytology. Mod Pathol. 2015;28(10):1360–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pınar Fırat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fırat, P. (2018). Benign Effusions. In: Davidson, B., Firat, P., Michael, C. (eds) Serous Effusions. Springer, Cham. https://doi.org/10.1007/978-3-319-76478-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76478-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76477-1

  • Online ISBN: 978-3-319-76478-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics