Groundwater Risk Sources Identification and Risk Reduction Management in the Song-Liao-River-Basin

  • Erik NixdorfEmail author
  • Yuanyuan Sun
  • Jing Su
  • Qiang Wang
  • Tong Wang
  • Olaf Kolditz
  • Beidou Xi
Part of the Terrestrial Environmental Sciences book series (TERENVSC)


This deliverable reports the establishment of index system for groundwater source risk assessment in the SUSTAIN H2O project during the project’s 1st reporting period. Two demonstration areas in the SLRB were chosen: one in Ashi River Basin and the other in Taizi River Basin. Ashi River is a tributary of Songhua River and Taizi River is a tributary of Liao River. The consortium members have conducted several field surveys in the study areas and acquired first-hand information. Experts from Germany provided technologies and strategies on groundwater risk assessment in EU countries. This deliverable is the outcome of the internal and external collaborations that the consortium members have engaged in the context of the SUSTAIN H\({}_{2}\)O project.


  1. 1.
    Directive 2000/60/EC of the European Parliament and of the Council of 23. Oct 2000. Establishing a framework for community action in the field of water policy, 2000. In The European parliament and the council of the European union: Technical report.Google Scholar
  2. 2.
    Technical report on groundwater risk assessment. 2004. Technical report, European Commission.Google Scholar
  3. 3.
    Directive 2006/118/EC of the European Parliament and of the Council of 12. Dec 2006. On the protection of groundwater against pollution and deterioration, 2006. In The European parliament and the council of the European union: Technical report.Google Scholar
  4. 4.
    Directive 2013/39/EU of the European Parliament and of the Council of August 12. 2013. Amending directive 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy, 2013. In The European parliament and the council of the European union: Technical report.Google Scholar
  5. 5.
    Guidance document no. 26. 2010. Guidance on risk assessment and the use of conceptual models for groundwater. Technical report, European Commission.Google Scholar
  6. 6.
    Scheidleder, A., J. Grath, and P. Quevauviller. 2007. Groundwater characterisation and risk assessment in the context of the EU Water Framework Directive. In Groundwater science and policy: An international overview, ed. P. Quevauviller, 175–192. The Royal Society of Chemistry.Google Scholar
  7. 7.
    Guidance Document No. 3. 2003. Pressures and impacts. Technical report, European Commission.Google Scholar
  8. 8.
    Arbeitshilfe zur Umsetzung der EG-Wasserrahmenrichtlinie (in German). 2003. Technical report, Landesarbeitsgemeinschaft Wasser.Google Scholar
  9. 9.
    Empfehlungen für die Erkundung. 1994. Bewertung und Behandlung von Grundwasserschäden (in German). Länderarbeitsgemeinschaft Wasser: Technical report.Google Scholar
  10. 10.
    Linda Aller, Jay H. Lehr, Rebecca Petty, and Truman Bennett. 1987. Drastic: A standardized system to evaluate groundwater pollution potential using hydrogeologic settings. Worthington, Ohio, United States of America: National Water Well Association.Google Scholar
  11. 11.
    Foster, S.D. 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In Vulnerability of soil and groundwater to pollutants, ed. W. van Duijvenbooden, and H.G. van Waegeningh, 69–86. The Hague: TNO Committee on Hydrological Research.Google Scholar
  12. 12.
    Civita, M., and M. De Maio. 1997. Assessing groundwater contamination risk using ARC/INFO via GRID function. In ESRI Conference. San Diego, USA.Google Scholar
  13. 13.
    Van Stempvoort, Dale, Lee Ewert, and Leonard Wassenaar. 1993. Aquifer vulnerability index: A GIS-compatible method for groundwater vulnerability mapping. Canadian Water Resources Journal 18 (1): 25–37.CrossRefGoogle Scholar
  14. 14.
    Nico Goldscheider, Markus Klute, Sebastian Sturm, and Heinz Hötzl. 2000. The PI method—A GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol 46 (3): 157–166.Google Scholar
  15. 15.
    Hölting, B., T. Haertle, K.H. Hohberger, K.H. Nachtigall, E. Villinger, and W. Weinzierl. 1995. Conception for the evaluation of the protective function of the unsaturated stratum above the groundwater table. Geol Jahrb C63: 5–24.Google Scholar
  16. 16.
    Foster, S.S.D., and P.J. Chilton. 2003. Groundwater: The processes and global significance of aquifer degradation. Philosophical Transactions of the Royal Society of London B: Biological Sciences 358 (1440): 1957–1972.CrossRefGoogle Scholar
  17. 17.
    Jac, van der Gun. 2012. Groundwater and global change: Trends, opportunities and challenges. Technical report.Google Scholar
  18. 18.
    Custodio, E. 2012. Trends in groundwater pollution: Loss of groundwater quality and related services, 74.Google Scholar
  19. 19.
    Zaporozec, A., A. Aureli, J.E. Conrad, et al. 2002. Groundwater contamination inventory: A methodological guide. Unesco Ihp-Vi, Ser Groundw 2: 17–21.Google Scholar
  20. 20.
    Johansson, P.-O., C. Scharp, T. Alveteg, and A. Choza. 1999. Framework for ground water protection-the managua ground water system as an example. Groundwater 37 (2): 204–213.CrossRefGoogle Scholar
  21. 21.
    Varnes, D.J., et al. 1981. The principles and practice of landslide hazard zonation. Bulletin of the International Association of Engineering Geology-Bulletin de l’Association Internationale de Géologie de l’Ingénieur 23 (1): 13–14.CrossRefGoogle Scholar
  22. 22.
    Li, Yongfang, Da Wang, Yuyan Liu, Quanmei Zheng, and Guifan Sun. 2017. A predictive risk model of groundwater arsenic contamination in China applied to the Huai River Basin, with a focus on the region’s cluster of elevated cancer mortalities. Applied Geochemistry 77: 178–183.CrossRefGoogle Scholar
  23. 23.
    Wang, Junjie, Jiangtao He, and Honghan Chen. 2012. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain. China. Science of the Total Environment 432: 216–226.CrossRefGoogle Scholar
  24. 24.
    Vito, F., Uricchio, Raffaele Giordano, and Nicola Lopez. 2004. A fuzzy knowledge-based decision support system for groundwater pollution risk evaluation. Journal of Environmental Management 73 (3): 189–197.CrossRefGoogle Scholar
  25. 25.
    Nobre, R.C.M., O.C. Rotunno Filho, W.J. Mansur, M.M.M. Nobre, and C.A.N. Cosenza. 2007. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. Journal of Contaminant Hydrology 94 (3): 277–292.CrossRefGoogle Scholar
  26. 26.
    Lavoie, Denis, Christine Rivard, René Lefebvre, and Stephan Séjourné, R. Thériault, Mathieu J. Duchesne, Jason M.E. Ahad, Baolin Wang, Nicolas Benoît, and Charles Lamontagne. 2014. The Utica Shale and gas play in southern Quebec: Geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation. International Journal of Coal Geology 126: 77–91.CrossRefGoogle Scholar
  27. 27.
    Neshat, Aminreza, Biswajeet Pradhan, and Saman Javadi. 2015. Risk assessment of groundwater pollution using Monte Carlo approach in an agricultural region: An example from Kerman Plain. Iran. Computers, Environment and Urban Systems 50: 66–73.CrossRefGoogle Scholar
  28. 28.
    Zhang, Guoqi, Kalyan V. Vasudevan, Brian L. Scott, and Susan K. Hanson. 2013. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions. Journal of the American Chemical Society 135 (23): 8668–8681.CrossRefGoogle Scholar
  29. 29.
    Foster, S., and R. Hirata. 1988. Groundwater pollution risk assessment: A methodology using available data, Lima.Google Scholar
  30. 30.
    Jarvis, N.J., J.M. Hollis, P.H. Nicholls, T. Mayr, and S.P. Evans. 1997. MACRO-DB: A decision-support tool for assessing pesticide fate and mobility in soils. Environmental Modelling and Software 12 (2–3): 251–265.CrossRefGoogle Scholar
  31. 31.
    Harry E. LeGrand. 1964. System for evaluation of contamination potential of some waste disposal sites. Journal (American Water Works Association) 56 (8): 959–974.Google Scholar
  32. 32.
    Fritch, T.G., C.L. McKnight, J.C. Yelderman Jr., S.I. Dworkin, and J.G. Arnold. 2000. A predictive modeling approach to assessing the groundwater pollution susceptibility of the Paluxy Aquifer, Central Texas, using a geographic information system. Environmental Geology 39 (9): 1063–1069.CrossRefGoogle Scholar
  33. 33.
    Enrique, Gomezdelcampo, and J. Ryan Dickerson. 2008. A modified DRASTIC model for siting confined animal feeding operations in Williams County, Ohio, USA. Environmental Geology 55 (8): 1821–1832.Google Scholar
  34. 34.
    Uddameri, V., and V. Honnungar. 2007. Combining rough sets and GIS techniques to assess aquifer vulnerability characteristics in the semi-arid South Texas. Environmental Geology 51 (6): 931–939.CrossRefGoogle Scholar
  35. 35.
    Albuquerque, M.T.D., G. Sanz, S.F. Oliveira, R. Martínez-Alegría, and I.M.H.R. Antunes. 2013. Spatio-temporal groundwater vulnerability assessment-a coupled remote sensing and GIS approach for historical land cover reconstruction. Water Resources Management 27 (13): 4509–4526.CrossRefGoogle Scholar
  36. 36.
    Panagopoulos, G.P., A.K. Antonakos, and N.J. Lambrakis. 2006. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeology Journal 14 (6): 894–911.CrossRefGoogle Scholar
  37. 37.
    Muheeb, M., A.A. Awawdeh, and Rasheed A. Jaradat. 2010. Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arabian Journal of Geosciences 3 (3): 273–282.Google Scholar
  38. 38.
    Jamrah, Ahmad, Ahmed Al-Futaisi, Natarajan Rajmohan, and Saif Al-Yaroubi. 2008. Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environmental Monitoring and Assessment 147 (1): 125–138.CrossRefGoogle Scholar
  39. 39.
    Huan, Huan, Jinsheng Wang, and Yanguo Teng. 2012. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin city of northeast China. Science of the Total Environment 440: 14–23.CrossRefGoogle Scholar
  40. 40.
    Xueyan, Y.E., Chuanyu You, D.U. Xinqiang, and Lixue Wang. 2015. Groundwater vulnerability to contamination near the river: A case study of the second Songhua River. Science and Technology Review 33: 78–83.Google Scholar
  41. 41.
    Distribution and mass inventory of mercury in sediment from the Yangtze River estuarine-inner shelf of the East China Sea. Continental Shelf Research, 132 (Supplement C): 29–37, 2017.CrossRefGoogle Scholar
  42. 42.
    Guo, Qinghai, Yanxin Wang, Xubo Gao, and Teng Ma. 2007. A new model (drarch) for assessing groundwater vulnerability to arsenic contamination at basin scale: A case study in Taiyuan basin, northern China. Environmental Geology 52 (5): 923–932.CrossRefGoogle Scholar
  43. 43.
    Eckhardt, D., W. Flipse, and E. Oaksford. 1989. Relation between land use and ground-water quality in the upper glacial aquifer in Nassau and Suffolk Counties. New York: Long Island.Google Scholar
  44. 44.
    Ouedraogo, I., and M. Vanclooster. 2016. A meta-analysis of groundwater contamination by nitrates at the African scale. In Hydrology and Earth System Sciences Discussions, 1–43.Google Scholar
  45. 45.
    Masoudi, Masoud, Gholam Reza Zehtabiyan, Reza Noruzi, S. Mohammad Mahdavi, Behruz Kuhenjani, et al. 2009. Hazard assessment of ground water resource degradation using GIS in Mond Miyani basin. Iran. World Applied Sciences Journal 6 (6): 802–807.Google Scholar
  46. 46.
    Baojing, Gu, and Ying Ge. 2013. Scott X Chang, Weidong Luo, and Jie Chang. Nitrate in groundwater of China: Sources and driving forces. Global Environmental Change 23 (5): 1112–1121.CrossRefGoogle Scholar
  47. 47.
    Zhang, W.L., Z.X. Tian, N. Zhang, and X.Q. Li. 1996. Nitrate pollution of groundwater in northern China. Agriculture, Ecosystems and Environment 59 (3): 223–231.CrossRefGoogle Scholar
  48. 48.
    Wang, Rui, Jian-Min Bian, and Yue Gao. 2014. Research on hydrochemical spatio-temporal characteristics of groundwater quality of different aquifer systems in Songhua River Basin, eastern Songnen Plain. Northeast China. Arabian Journal of Geosciences 7 (12): 5081–5092.CrossRefGoogle Scholar
  49. 49.
    Vrba, J., and A. Zaporozec. 1994. Guidebook on mapping groundwater vulnerability. In International association of hydrogeologists. International contributions to hydrogeology, vol. 16. Heise, Hannover.Google Scholar
  50. 50.
    Andreo, Bartolomé, Nico Goldscheider, Inaki Vadillo, Jesús María Vías, Christoph Neukum, Michael Sinreich, Pablo Jiménez, Julia Brechenmacher, Francisco Carrasco, Heinz Hötzl, et al. 2006. Karst groundwater protection: First application of a Pan-European approach to vulnerability, hazard and risk mapping in the Sierra de Líbar (Southern Spain). Science of the Total Environment 357 (1): 54–73.CrossRefGoogle Scholar
  51. 51.
    Sharif Moniruzzaman, Shirazi, H.M. Imran, and Shatirah Akib. 2012. GIS-based DRASTIC method for groundwater vulnerability assessment: A review. Journal of Risk Research 15 (8): 991–1011.CrossRefGoogle Scholar
  52. 52.
    Lehner, Bernhard, Kristine Verdin, and Andy Jarvis. 2008. New global hydrography derived from spaceborne elevation data. Eos, Transactions American Geophysical Union 89 (10): 93–94.CrossRefGoogle Scholar
  53. 53.
    Robert, J. Hijmans, Susan E. Cameron, Juan L. Parra, Peter G. Jones, and Andy Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25 (15): 1965–1978.CrossRefGoogle Scholar
  54. 54.
    Miralles, D.G., T.R.H. Holmes, R.A.M. De Jeu, J.H. Gash, A.G.C.A. Meesters, and A.J. Dolman. 2011. Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences 15 (12): 453–469.CrossRefGoogle Scholar
  55. 55.
    Shangguan, Wei, Yongjiu Dai, Baoyuan Liu, Axing Zhu, Qingyun Duan, Wu Lizong, Duoying Ji, Aizhong Ye, Hua Yuan, Qian Zhang, et al. 2013. A china data set of soil properties for land surface modeling. Journal of Advances in Modeling Earth Systems 5 (2): 212–224.CrossRefGoogle Scholar
  56. 56.
    Jun, Chen, Yifang Ban, and Songnian Li. 2014. China: Open access to earth land-cover map. Nature 514 (7523): 434–434.CrossRefGoogle Scholar
  57. 57.
    Center for International Earth Science Information Network CIESIN Columbia University. 2015. Gridded population of the world, version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Erik Nixdorf
    • 1
    Email author
  • Yuanyuan Sun
    • 2
  • Jing Su
    • 2
  • Qiang Wang
    • 3
  • Tong Wang
    • 4
  • Olaf Kolditz
    • 5
  • Beidou Xi
    • 2
  1. 1.Helmholtz Centre for Environmental Research, DELeipzigGermany
  2. 2.Chinese Research Academy of Environmental SciencesChaoyangChina
  3. 3.Heilongjiang Provincial Research Institute of Environmental ScienceHarbinChina
  4. 4.Liaoning Academy of Environmental SciencesShenyangChina
  5. 5.Helmholtz Centre for Environmental Research, TU Dresden, DEDresdenGermany

Personalised recommendations