Advertisement

Capacity on Demand Steganography Through Adaptive Threshold Strategy

  • Sheng-Chih Ho
  • Chung-Yi Lin
  • Chao-Lung Chou
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 733)

Abstract

In the process of secret communication, in fact, the length of each transmission of ciphertext will never be the same. In order to meet dynamic length of ciphertext and provide a good image quality, a novel adaptive threshold strategy is presented. Firstly, a threshold pixel value and a k value are decided dynamically based on the length of ciphertext and the cumulative statistics of cover-image’s pixel value. Then if a pixel value is more than threshold value, more than k bits secret data can be embedded by using modified Least Significant Bit (LSB) substitution method, or the data of equal or less than k bits can be embedded. This dynamic strategy can adjust hiding capacity consistent with the length of secret message, and the secret data can be embedded in stego-image as evenly as possible. Quality of stego-image would be improved by this way. The experimental results, the proposed method not only achieves a larger embedding capacity, but also has higher visual quality of stego-image than most of proposed LSB based methods.

Keywords

Adaptive steganography Threshold pixel value Spatial-domain Modified LSB substitution 

References

  1. 1.
    Highland, H.J.: Data encryption: a non-mathematical approach. Comput. Secur. 16(5), 369–386 (1997)CrossRefGoogle Scholar
  2. 2.
    Wang, H., Wang, S.: Cyber warfare: steganography vs. steganalysis. Commun. ACM 47(10), 76–82 (2004)CrossRefGoogle Scholar
  3. 3.
    Katzenbeisser, S., Petitcolas, F.A.: Information Hiding Techniques for Steganography and Digital Watermarking, hardcover edn. Artech House (2000)Google Scholar
  4. 4.
    Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for data hiding. IBM Syst. J. 35(3), 313–336 (1996)CrossRefGoogle Scholar
  5. 5.
    Chan, C.-K., Cheng, L.-M.: Hiding data in images by simple LSB substitution. Pattern Recogn. 37(3), 469–474 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Thien, C.-C., Lin, J.-C.: A simple and high-hiding capacity method for hiding digit-by-digit data in images based on modulus function. Pattern Recogn. 36(12), 2875–2881 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Wu, D.-C., Tsai, W.-H.: A steganographic method for images by pixel-value differencing. Pattern Recogn. Lett. 24(9–10), 1613–1626 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Yang, C.-H.: Inverted pattern approach to improve image quality of information hiding by LSB substitution. Pattern Recogn. 41(8), 2674–2683 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Wu, H.-C., Wu, N.-I., Tsai, C.-S., Hwang, M.-S.: Image steganographic scheme based on pixel-value differencing and LSB replacement methods. IEE Proc. Vis. Image Sig. Process. 152(5), 611–615 (2005)CrossRefGoogle Scholar
  10. 10.
    Wang, C.-M., Wu, N.-I., Tsai, C.-S., Hwang, M.-S.: A high quality steganographic method with pixel-value differencing and modulus function. J. Syst. Softw. 81(1), 150–158 (2008)CrossRefGoogle Scholar
  11. 11.
    Yang, C.-H., Weng, C.-Y., Wang, S.-J., Sun, H.-M.: Adaptive data hiding in edge areas of images with spatial LSB domain systems. IEEE Trans. Inf. Forensics Secur. 3(3), 488–497 (2008)CrossRefGoogle Scholar
  12. 12.
    Lou, D.-C., Ho, S.-C., Chiu, C.-C.: Hybrid high-capacity data hiding by pixel-value differencing and modulus function. J. Internet Technol. 12(3), 303–312 (2011)Google Scholar
  13. 13.
    Lee, Y.-P., Lee, J.-C., Chen, W.-K., Chang, K.-C., Su, I.-J., Chang, C.-P.: High-payload image hiding with quality recovery using tri-way pixel-value differencing. Inf. Sci. 191, 214–225 (2012)CrossRefGoogle Scholar
  14. 14.
    Yang, C.-H., Weng, C.-Y., Tso, H.-K., Wang, S.-J.: A data hiding scheme using the varieties of pixel-value differencing in multimedia images. J. Syst. Softw. 84(4), 669–678 (2011)CrossRefGoogle Scholar
  15. 15.
    Yang, C.-N., Hsu, S.-C., Kim, C.: Improving stego image quality in image interpolation based data hiding. Comput. Stand. Interfaces 50, 209–215 (2017)CrossRefGoogle Scholar
  16. 16.
    Hussain, M., Wahab, A.W.A., Ho, A.T.S., Javed, N., Jung, K.-H.: A data hiding scheme using parity-bit pixel value differencing and improved rightmost digit replacement. Sig. Process. Image Commun. 50, 44–57 (2017)CrossRefGoogle Scholar
  17. 17.
    Hong, W.: Adaptive image data hiding in edges using patched reference table and pair-wise embedding technique. Inf. Sci. 221, 473–489 (2013)CrossRefGoogle Scholar
  18. 18.
    Xu, W.-L., Chang, C.-C., Chen, T.-S., Wang, L.-M.: An improved least-significant-bit substitution method using the modulo three strategy. Displays 42, 36–42 (2016)CrossRefGoogle Scholar
  19. 19.
    Lu, T.-C.: Interpolation-based hiding scheme using the modulus function and re-encoding strategy. Sig. Process. 142, 244–259 (2018)CrossRefGoogle Scholar
  20. 20.
    Swain, G.: A steganographic method combining LSB substitution and PVD in a block. Procedia Comput. Sci. 85, 39–44 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Information ManagementNational Defense UniversityTaipeiTaiwan
  2. 2.Department of Computer Science and Information EngineeringNational Defense UniversityTaoyuanTaiwan

Personalised recommendations