Skip to main content

Traits: Structuring Species Information for Discoverability, Navigation and Identification

  • Chapter
  • First Online:
Multimedia Tools and Applications for Environmental & Biodiversity Informatics

Abstract

Conventionally, species traits concepts have been conceived from an ecological perspective after grouping them as functional traits, response traits or effect traits: attributes of individual organisms that express phenotypes in response to the environment and its effects on the organism. From an informatics perspective, traits may be conceived to encompass a broader vocabulary that can capture any species attribute including, but not limited to those concerning its morphology, taxonomy, functional role, habitat, ecological interactions, trophic strategies, genetics, evolution, conservation status, anthropological uses, ecosystem services etc. The evolution of such a vocabulary and its standardisation across disciplines and taxa is a challenge, but one that needs imminent attention as the field develops. Furthermore, traits can have values that vary within and across individuals and species. The ability to associate traits with levels of a taxonomic hierarchy, aggregate species traits from individual records, flexibility to attribute categorical text, numeric, temporal and spatial values; associate them with ontologies; and conform to standards, can evolve traits as a flexible framework to structure descriptive, numeric and tabular data on species. Such a framework for structuring descriptive species data will, allow better discoverability and navigation of the information and has potential for developing further applications such as polyclave identification keys and analytical aids for big data. The open source Biodiversity Informatics Platform that powers three international initiatives across Asia and Africa has been evolving as an effective platform to aggregate and build open access databases for varied biodiversity data types. It has ability to handle varied data types such as descriptive data, occurrences, maps and documents. The platform has recently added a traits infrastructure that is participatory and can aggregate traits from curated databases as well as by crowdsourcing from observation and collection data. It is flexible in building vocabularies to structure descriptive species information and media, evolving into a framework which allows flexible yet efficient navigation of species information in an information system. Here, we discuss this model, its application within the applied initiatives, its potential use in classifying multimedia data for species characterization in a complex context and in facilitating trait analysis. We also cover potential applications of the trait framework for developing into a comprehensive and effective infrastructure for aggregating and structuring species information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://indiabiodiversity.org.

  2. 2.

    http://biodiversity.bt/.

  3. 3.

    http://portal.wikwio.org/.

  4. 4.

    https://github.com/strandls/biodiv.

  5. 5.

    http://www.iucnredlist.org/.

  6. 6.

    https://questagame.com/.

  7. 7.

    http://www.citizensort.org/web.php/happymatch.

  8. 8.

    https://www.try-db.org/TryWeb/Home.php.

  9. 9.

    http://www2.ufz.de/biolflor/index.jsp.

  10. 10.

    http://www.sealifebase.org/.

  11. 11.

    https://ecologicaldata.org/wiki/pantheria.

  12. 12.

    http://eol.org/info/516.

  13. 13.

    http://leafsnap.com/.

  14. 14.

    http://identify.plantnet-project.org/.

  15. 15.

    http://merlin.allaboutbirds.org/.

  16. 16.

    https://sites.google.com/visipedia.org/index/home.

  17. 17.

    http://wwbota.free.fr/.

  18. 18.

    https://sites.google.com/site/biosemanticsproject/project-progress-wiki.

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Zheng, X. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. Retrieved from http://arxiv.org/abs/1603.04467

  2. Akella, L., Norton, C. N., & Miller, H. (2012). NetiNeti: discovery of scientific names from text using machine learning methods. BMC Bioinformatics, 13(1), 211. https://doi.org/10.1186/1471-2105-13-211

    Article  Google Scholar 

  3. Aldershoff, F., Salden, A. H., Iacob, S. M., & Kempen, M. (2003). Supervised multimedia categorization. In M. M. Yeung, R. W. Lienhart, & C.-S. Li (Eds.) (p. 100). https://doi.org/10.1117/12.476242

  4. Alpaydin, E. (2010). Introduction to machine learning. MIT Press.

    Google Scholar 

  5. Arnold, S. J. (1983). Morphology, Performance and Fitness. American Zoologist, 23(2), 347–361. http://doi.org/10.1093/icb/23.2.347

    Article  Google Scholar 

  6. Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C. B., Sinca, F., Llactayo, W. (2017). Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 355(6323). Retrieved from http://science.sciencemag.org/content/355/6323/385

    Article  Google Scholar 

  7. Baker, K. S., & Millerand, F. (2010). Infrastructuring ecology: challenges in achieving data sharing Karen S. Baker and Florence Millerand. In Collaboration in the new life sciences / edited by John N. Parker, Niki Vermeulen and Bart Penders. Farnham, Surrey, England: Ashgate.

    Google Scholar 

  8. Barry, J. (2016). Identifying biodiversity using citizen science and computer vision: Introducing Visipedia. TDWG 2016 ANNUAL CONFERENCE. Retrieved from https://mbgocs.mobot.org/index.php/tdwg/tdwg2016/paper/view/1112/0

  9. Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Retrieved from https://pdfs.semanticscholar.org/566c/1c6bd366b4c9e07fc37eb372771690d5ba31.pdf

  10. Bonnet, P., Joly, A., Goëau, H., Champ, J., Vignau, C., Molino, J.-F., Boujemaa, N. (2016). Plant identification: man vs. machine. Multimedia Tools and Applications, 75(3), 1647–1665. https://doi.org/10.1007/s11042-015-2607-4

    Article  Google Scholar 

  11. Borst, W. N. (1997, September 5). Construction of Engineering Ontologies for Knowledge Sharing and Reuse. Centre for Telematics and Information Technology University of Twente University of Twente. Retrieved from https://research.utwente.nl/en/publications/construction-of-engineering-ontologies-for-knowledge-sharing-and-

  12. Buttigieg, P., Morrison, N., Smith, B., Mungall, C. J., & Lewis, S. E. (2013). The environment ontology: contextualising biological and biomedical entities. Journal of Biomedical Semantics, 4(1), 43. https://doi.org/10.1186/2041-1480-4-43

    Article  Google Scholar 

  13. Cernansky, R. (2017). Biodiversity moves beyond counting species. Nature, 546(7656), 22–24. http://doi.org/10.1038/546022a

    Article  Google Scholar 

  14. Cui, H. (2008). Converting Taxonomic Descriptions to New Digital Formats. Biodiversity Informatics, 5(0). https://doi.org/10.17161/bi.v5i0.46

  15. Cui, H. (2010a). Competency evaluation of plant character ontologies against domain literature. Journal of the American Society for Information Science and Technology, 61(6), n/a-n/a. https://doi.org/10.1002/asi.21325

  16. Cui, H. (2010b). Semantic annotation of morphological descriptions: an overall strategy. BMC Bioinformatics, 11, 278. https://doi.org/10.1186/1471-2105-11-278

    Article  Google Scholar 

  17. Diederich, J., Fortuner, R., & Milton, J. (1999). Computer-assisted data extraction from the taxonomical literature. Retrieved November 27, 2017, from https://www.math.ucdavis.edu/~milton/genisys/terminator.html

  18. Doan, A., Madhavan, J., Domingos, P., & Halevy, A. (2004). Ontology Matching: A Machine Learning Approach. In Handbook on Ontologies (pp. 385–403). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  19. Edwards, M., & Morse, D. R. (1995). The potential for computer-aided identification in biodiversity research. Trends in Ecology & Evolution, 10(4), 153–158. https://doi.org/10.1016/S0169-5347(00)89026-6

    Article  Google Scholar 

  20. Estrada, A., Morales-Castilla, I., Caplat, P., & Early, R. (2016). Usefulness of Species Traits in Predicting Range Shifts. Trends in Ecology & Evolution, 31(3), 190–203. https://doi.org/10.1016/j.tree.2015.12.014

    Article  Google Scholar 

  21. Geijzendorffer, I. R., Regan, E. C., Pereira, H. M., Brotons, L., Brummitt, N., Gavish, Y., Walters, M. (2016). Bridging the gap between biodiversity data and policy reporting needs: An Essential Biodiversity Variables perspective. Journal of Applied Ecology, 53(5), 1341–1350. https://doi.org/10.1111/1365-2664.12417

    Article  Google Scholar 

  22. Guralnick, R. (2017). Traits as Essential Biodiversity Variables. Proceedings of TDWG, 1, e20295. https://doi.org/10.3897/tdwgproceedings.1.20295

    Article  Google Scholar 

  23. Grard, P., Bonnet, P., Prosperi, M.-J., Le Bourgeois, T., Edelin, C., Theveny, F., & Alain, C. (2009). A graphical tool for computer-assisted plant identification. In Proceedings of TDWG 2009 Annual Conference. Montpellier, France. Retrieved from http://www.tdwg.org/proceedings/article/view/485

  24. Hébert, M.-P., Beisner, B. E., & Maranger, R. (2017). Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. Journal of Plankton Research, 39(1), 3–12. http://doi.org/10.1093/plankt/fbw068

    Article  Google Scholar 

  25. Hillebrand, H., & Matthiessen, B. (2009). Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 12(12), 1405–1419. https://doi.org/10.1111/j.1461-0248.2009.01388.x

    Article  Google Scholar 

  26. Hoehndorf, R., Alshahrani, M., Gkoutos, G. V., Gosline, G., Groom, Q., Hamann, T., Weiland, C. (2016). The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants. Journal of Biomedical Semantics, 7(1), 65. https://doi.org/10.1186/s13326-016-0107-8

  27. Hughes, L. M., Bao, J., Hu, Z.-L., Honavar, V., & Reecy, J. M. (2008). Animal trait ontology: The importance and usefulness of a unified trait vocabulary for animal species. Journal of Animal Science, 86(6), 1485–91. https://doi.org/10.2527/jas.2008-0930

    Article  Google Scholar 

  28. Jaiswal, P., Ware, D., Ni, J., Chang, K., Zhao, W., Schmidt, S., McCouch, S. (2002). Gramene: Development and Integration of Trait and Gene Ontologies for Rice. Comparative and Functional Genomics, 3(2), 132–136. https://doi.org/10.1002/cfg.156

    Article  Google Scholar 

  29. Joly, A., Bonnet, P., Goëau, H., Barbe, J., Selmi, S., Champ, J., Barthélémy, D. (2016). A look inside the Pl@ntNet experience. Multimedia Systems, 22(6), 751–766. https://doi.org/10.1007/s00530-015-0462-9

    Article  Google Scholar 

  30. Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J., Orme, C. D. L., Purvis, A. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90(9), 2648–2648. https://doi.org/10.1890/08-1494.1

    Article  Google Scholar 

  31. Kattge, J., Daz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Wirth, C. (2011). TRY - a global database of plant traits. Global Change Biology, 17(9), 2905–2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x

  32. Khan, S., & Safyan, M. (2014). Semantic matching in hierarchical ontologies. Journal of King Saud University - Computer and Information Sciences, 26(3), 247–257. https://doi.org/10.1016/j.jksuci.2014.03.010

    Article  Google Scholar 

  33. Le Bourgeois, T., E. Jeuffrault, P. Grard and A. Carrara (2004). A new process to identify the weeds of La Réunion Island: the AdvenRun system. 14th Australian Weeds Conference, Charles Sturt University, Wagga Wagga, Australia, Weed Society of New South Wales.

    Google Scholar 

  34. Le Bourgeois, T., P. Bonnet, M. Couteau, P. Grard, C. Edelin, J. Prosperi and F. theveny (2008). IDAO Identification assisted by computer. IUCN World Conservation Congress. Workshop : Safegarding biodiversity and livelyhood from biological invasion: goal sharing of experience and information as a key step to effective management at local level. Barcelona, Spain.

    Google Scholar 

  35. Le Bourgeois, T., P. Grard, A. P. Andrianaivo, A. Gaungoo, Y. Ibrahim, J. A. Randriamampianina, D. Balasubramanian, P. Marnotte, B. Ramesh, V. Andrianavalona, F. Hadji, Y. Karthik, M. Ramamonjihasina, K. Sathish and A. Seechurn (2015). WIKWIO - Weed Identification and Knowledge in the Western Indian Ocean - Web 2.0 participatory portal., European Union programme ACP S&T II, Cirad, IFP, MCIA/MSIRI, FOFIFA, CNDRS eds.http://portal.wikwio.org.

  36. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Wardle, D. A. (2001). Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science, 294(5543). Retrieved from http://science.sciencemag.org/content/294/5543/804

    Article  Google Scholar 

  37. Mabee, P., Ashburner, M., Cronk, Q., Gkoutos, G., Haendel, M., Segerdell, E., Westerfield, M. (2007). Phenotype ontologies: the bridge between genomics and evolution. Trends in Ecology & Evolution, 22(7), 345–350. https://doi.org/10.1016/j.tree.2007.03.013

    Article  Google Scholar 

  38. Mata-Montero, E., & Carranza-Rojas, J. (2016). Automated Plant Species Identification: Challenges and Opportunities (pp. 26–36). Springer, Cham. https://doi.org/10.1007/978-3-319-44447-5_3

    Chapter  Google Scholar 

  39. Martellos, S., & Nimis, P. L. (n.d.). KeyToNature: Teaching and Learning Biodiversity: Dryades, the Italian Experience.

    Google Scholar 

  40. McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21(4), 178–185. http://doi.org/10.1016/j.tree.2006.02.002

    Article  Google Scholar 

  41. Mungall, C. J., Torniai, C., Gkoutos, G. V, Lewis, S. E., & Haendel, M. A. (2012). Uberon, an integrative multi-species anatomy ontology. Genome Biology, 13(1), R5. https://doi.org/10.1186/gb-2012-13-1-r5

    Article  Google Scholar 

  42. Nock, C. A., Vogt, R. J., Beisner, B. E., Nock, C. A., Vogt, R. J., & Beisner, B. E. (2016). Functional Traits. In eLS (pp. 1–8). Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0026282

  43. Ong, E., Xiang, Z., Zhao, B., Liu, Y., Lin, Y., Zheng, J., He, Y. (2017). Ontobee: A linked ontology data server to support ontology term dereferencing, linkage, query and integration. Nucleic Acids Research, 45(D1), D347–D352. https://doi.org/10.1093/nar/gkw918

    Article  Google Scholar 

  44. Page, R. (2016). Towards a biodiversity knowledge graph. Research Ideas and Outcomes, 2, e8767. https://doi.org/10.3897/rio.2.e8767

  45. Park, C. A., Bello, S. M., Smith, C. L., Hu, Z.-L., Munzenmaier, D. H., Nigam, R., Reecy, J. M. (2013). The Vertebrate Trait Ontology: a controlled vocabulary for the annotation of trait data across species. Journal of Biomedical Semantics, 4(1), 13. https://doi.org/10.1186/2041-1480-4-13

    Article  Google Scholar 

  46. Parr, C. S., Schulz, K. S., Hammock, J., Wilson, N., Leary, P., Rice, J., & Corrigan, R. J. (2016). TraitBank: Practical semantics for organism attribute data. Semantic Web, 7(6), 577–588. https://doi.org/10.3233/SW-150190

    Article  Google Scholar 

  47. Silvertown, J., Harvey, M., Greenwood, R., Dodd, M., Rosewell, J., Rebelo, T., McConway, K. (2015). Crowdsourcing the identification of organisms: A case-study of iSpot. ZooKeys, 480, 125–146. https://doi.org/10.3897/zookeys.480.8803

    Article  Google Scholar 

  48. Statzner, B., Hildrew, A. G., & Resh, V. H. (2001). Species traits and environmental constraints: Entomological research and the history of ecological theory. Annual Review of Entomology, 46(1), 291–316. https://doi.org/10.1146/annurev.ento.46.1.291

    Article  Google Scholar 

  49. Thessen, A. E., Cui, H., & Mozzherin, D. (2012). Applications of natural language processing in biodiversity science. Advances in Bioinformatics, 2012, 391574. https://doi.org/10.1155/2012/391574

  50. Tilman, D., & Downing, J. A. (1994). Biodiversity and stability in grasslands. Nature, 367(6461), 363–365. http://doi.org/10.1038/367363a0

    Article  Google Scholar 

  51. Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997). The Influence of Functional Diversity and Composition on Ecosystem Processes. Science, 277(5330). Retrieved from http://science.sciencemag.org/content/277/5330/1300

    Article  Google Scholar 

  52. Vattakaven, T., George, R., Balasubramanian, D., Réjou-Méchain, M., Muthusankar, G., Ramesh, B., & Prabhakar, R. (2016). India Biodiversity Portal: An integrated, interactive and participatory biodiversity informatics platform. Biodiversity Data Journal, 4, e10279. http://doi.org/10.3897/BDJ.4.e10279

    Article  Google Scholar 

  53. Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882–892. http://doi.org/10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  54. Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., & Kattge, J. (2014). The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13690–6. https://doi.org/10.1073/pnas.1415442111

    Article  Google Scholar 

  55. Witten, I. H. (Ian H., Frank, E., & Hall, M. A. (Mark A. (2011). Data mining : practical machine learning tools and techniques. Morgan Kaufmann. Retrieved from http://www.sciencedirect.com/science/book/9780123748560

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vattakaven, T., Rajagopal, P., Dhandapani, B., Grard, P., Le Bourgeois, T. (2018). Traits: Structuring Species Information for Discoverability, Navigation and Identification. In: Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., Bonnet, P. (eds) Multimedia Tools and Applications for Environmental & Biodiversity Informatics. Multimedia Systems and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-76445-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76445-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76444-3

  • Online ISBN: 978-3-319-76445-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics