Skip to main content

Subsidence Visualization

  • Chapter
  • First Online:
Subsidence Analysis and Visualization

Abstract

In this chapter, we introduce geological data visualization techniques and discuss how these techniques can be applied to the subsidence analysis and visualization of a sedimentary basin. Geoscientific data are often sparsely distributed over wide study areas, therefore data interpolation is required to generate comprehensive maps. We examine five commonly used methods for surface reconstruction, which are Linear, Natural, Cubic Spline, Thin-Plate Spline as well as Ordinary Kriging. We discuss their usage and individual interpolation characteristics and further exemplify their application in a case study for the total and tectonic subsidence of the Vienna Basin. BasinVis, a MATLABĀ®-based program, is used to visualize sedimentary infill and subsidence evolution of the study area. This case study introduces the application and advantages of 2D and 3D visualization in basin subsidence study. In addition, we discuss limitations of surface interpolation and provide guidelines to avoid misinterpretation of data in uncertain regions of reconstructed subsidence maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht J (2007) Spatial statistics. In: Key concepts and techniques in GIS. Sage, London

    Google ScholarĀ 

  • Amidror I (2002) Scattered data interpolation methods for electronic imaging systems: a survey. J Electron Imaging 11:157ā€“176. https://doi.org/10.1117/1.1455013

    ArticleĀ  Google ScholarĀ 

  • ArzmĆ¼ller G, Buchta S, RalbovskĆ½ E, Wessely G (2006) The Vienna Basin. In: Golonka J, Picha FJ (ed) AAPG Memoir 84: the carpathians and their foreland: geology and hydrocarbon resources. AAPG

    Google ScholarĀ 

  • Beidinger A, Decker K (2014) Quantifying Early Miocene in-sequence and out-of-sequence thrusting at the Alpineā€“Carpathian junction. Tectonics 33:222ā€“252. https://doi.org/10.1002/2012TC003250

    ArticleĀ  Google ScholarĀ 

  • Bobach T, Umlauf G (2006) Natural neighbor interpolation and order of continuity. In: Hagen H, Kerren A, Dannenmann P (ed) GI lecture notes in informatics, visualization of large and unstructured data sets

    Google ScholarĀ 

  • Cressie N (1988) Spatial prediction and ordinary kriging. Math Geol 20:405ā€“421

    ArticleĀ  Google ScholarĀ 

  • Cressie NAC (1993) Spatial prediction and kriging. In: Cressie NAC (ed) Statistics for spatial data. Wiley, New York

    Google ScholarĀ 

  • Decker K (1996) Miocene tectonics at the Alpineā€“Carpathian junction and the evolution of the Vienna Basin. Mitt Ges Geol Bergbaustud 41:44ā€“55

    Google ScholarĀ 

  • Decker K, Peresson H, Hinsch R (2005) Active tectonics and Quaternary basin formation along the Vienna Basin Transform fault. Quat Sci Rev 24:307ā€“322. https://doi.org/10.1016/j.quascirev.2004.04.012

    ArticleĀ  Google ScholarĀ 

  • Fodor L (1995) From transpression to transtension: Oligoceneā€“Miocene structural evolution of the Vienna basin and the East Alpineā€“Western Carpathian junction. Tectonophysics 242:151ā€“182. https://doi.org/10.1016/0040-1951(94)00158-6

    ArticleĀ  Google ScholarĀ 

  • Franke R (1982) Smooth interpolation of scattered data by local thin plate splines. Comput Math Appl 8:273ā€“281. https://doi.org/10.1016/0898-1221(82)90009-8

    ArticleĀ  Google ScholarĀ 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156ā€“1167. https://doi.org/10.1126/science.235.4793.1156

    ArticleĀ  Google ScholarĀ 

  • Hengl T (2009) A practical guide to geostatistical mapping of environmental variables. Geoderma 140:417ā€“427

    ArticleĀ  Google ScholarĀ 

  • Hohenegger J, Corić S, Wagreich M (2014) Timing of the middle miocene Badenian stage of the central Paratethys. Geol Carpath 65:55ā€“66

    ArticleĀ  Google ScholarĀ 

  • Hƶlzel M, Decker K, ZĆ”molyi A, Strauss P, Wagreich M (2010) Lower Miocene structural evolution of the central Vienna Basin (Austria). Mar Petrol Geol 27:666ā€“681

    ArticleĀ  Google ScholarĀ 

  • Hutchinson MF (1995) Interpolating mean rainfall using thin plate smoothing splines. Int J Geogr Inf Syst 9:385ā€“403. https://doi.org/10.1080/02693799508902045

    ArticleĀ  Google ScholarĀ 

  • JiÅ™Ć­Äek R, Seifert P (1990) Paleogeography of the Neogene in the Vienna basin and the adjacent part of the foredeep. In: MinaÅ™Ć­kovĆ” D (eds) Thirty years of geological cooperation between Austria and Czechoslovakia. Geol Surv, Prague

    Google ScholarĀ 

  • Lai M-J (2008) Multivariate splines for data fitting and approximation. In: Neamtu M (eds) Approximation theory XII: San Antonio 2007. Nashboro Press, Brentwood, TN

    Google ScholarĀ 

  • Laslett GM, McBratney AB, Pahl PJ, Hutchinson MF (1987) Comparison of several spatial prediction methods for soil pH. J Soil Sci 38:325ā€“341. https://doi.org/10.1111/j.1365-2389.1987.tb02148.x

    ArticleĀ  Google ScholarĀ 

  • Lee EY, Wagreich M (2016) 3D visualization of the sedimentary fill and subsidence evolution in the northern and central Vienna Basin (Miocene). Austrian J Earth Sci 109:241ā€“251. https://doi.org/10.17738/ajes.2016.0018

    ArticleĀ  Google ScholarĀ 

  • Lee EY, Wagreich M (2017) Polyphase tectonic subsidence evolution of the Vienna Basin inferred from quantitative subsidence analysis. Int J Earth Sci 106:687ā€“705. https://doi.org/10.1007/s00531-016-1329-9

    ArticleĀ  Google ScholarĀ 

  • Lee EY, Novotny J, Wagreich M (2016) BasinVis 1.0: A MATLABĀ®-based program for sedimentary basin subsidence analysis and visualization. Comput & Geosci 91:119ā€“127. https://doi.org/10.1016/j.cageo.2016.03.013

    ArticleĀ  Google ScholarĀ 

  • Li J, Heap A (2008) A review of spatial interpolation methods for 46 environmental scientists. Record 2008/23. Geosci Aust 47, Canberra

    Google ScholarĀ 

  • McCauley JD, Engel BA (1997) Approximation of noisy bivariate traverse data for precision mapping. Trans Am Soc Agric Eng 40:237ā€“245

    ArticleĀ  Google ScholarĀ 

  • Mitas L, Mitasova H (1999) Spatial interpolation. In: Longley PA, Goodchild MF, Maguire DJ (eds) Geographical information systems: principles, techniques, management and applications. Wiley, New York

    Google ScholarĀ 

  • Nielson GM (1993) Scattered data modeling. IEEE Comput Graphics Appl 13:60ā€“70

    ArticleĀ  Google ScholarĀ 

  • Peresson H, Decker K (1997a) Far-field effects of Late Miocene subduction in the Eastern Carpathians: Eā€“W compression and inversion of structures in the Alpineā€“Carpathianā€“Pannonian region. Tectonics 16:38ā€“56

    ArticleĀ  Google ScholarĀ 

  • Peresson H, Decker K (1997b) The Tertiary dynamics of the northern Eastern Alps (Austria): changing palaeostresses in a collisional plate boundary. Tectonophysics 272:125ā€“157

    ArticleĀ  Google ScholarĀ 

  • Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphyā€”current status and future directions. Stratigraphy 4:151ā€“168

    Google ScholarĀ 

  • Renka RJ, Cline AK (1984) A triangle-based C1 interpolation method. Rocky Mountain J Math 14:223ā€“237

    ArticleĀ  Google ScholarĀ 

  • Royden LH (1985) The Vienna Basin: a thin-skinned pull-apart basin. In: Biddle KT (eds) SEPM Spec Pub 37: strike-slip deformation, basin formation, and sedimentation. SEPM, Tulsa

    Google ScholarĀ 

  • Salcher BC, Meurers B, Smit J, Decker K, HÓ§lzel M, Wagreich M (2012) Strike-slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives. Tectonics 31:TC3004. https://doi.org/10.1029/2011tc002979

    ArticleĀ  Google ScholarĀ 

  • Sauer R, Seifert P, Wessely G (1992) Part I: Outline of sedimentation, tectonic framework and hydrocarbon occurrence in Eastern Lower Austria. Austrian J Earth Sci 85:5ā€“96

    Google ScholarĀ 

  • Seifert P (1992) Palinspastic reconstruction of the easternmost Alps between Upper Eocene and Miocene. Geol Carpath 43:327ā€“331

    Google ScholarĀ 

  • Steininger FF, Wessely G (1999) From the Tethyan Ocean to the Paratethys Sea: Oligocene to neogene stratigraphy, paleogeography and palaeobiogeography of the circum-Mediterranean region and the Oligocene to Neogene Basin evolution in Austria. Mitt Ɩsterr Geol Ges 92:95ā€“116

    Google ScholarĀ 

  • Strauss P, Harzhauser M, Hinsch R, Wagreich M (2006) Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin)ā€”a 3D seismic based integrated approach. Geol Carpath 57:185ā€“197

    Google ScholarĀ 

  • Wagreich M, Schmid HP (2002) Backstripping dip-slip fault histories: apparent slip rates for the Miocene of the Vienna Basin. Terra Nova 14:163ā€“168

    ArticleĀ  Google ScholarĀ 

  • Wahba G, Wendelberger J (1980) Some new mathematical methods for variational objective analysis using splines and cross-validation. Monthly Weather Rev 108:1122ā€“1145. https://doi.org/10.1175/1520-0493(1980)108%3C1122:SNMMFV%3E2.0.CO;2

    ArticleĀ  Google ScholarĀ 

  • Watson DF (1992) Contouring: a guide to the analysis and display of spatial data. Pergamon Press, Oxford

    Google ScholarĀ 

  • Watson DF, Philip GM (1984) Triangle based interpolation. Math Geol 16:779ā€“795

    ArticleĀ  Google ScholarĀ 

  • Webster R, Oliver M (2001) Geostatistics for Environmental Scientists. Wiley, Chichester

    Google ScholarĀ 

  • Weibel R, Heller M (1991) Digital terrain modelling. In: Goodchild MF, Maguire DJ, Rhind DW (ed) Geographical information systems: principles and applications. Wiley and Longman, Harlow and New York

    Google ScholarĀ 

  • Wessely G, Krƶll A, JirĆ­cek R, Nemec F (1993) Wiener Becken und angrenzende Gebiete-Geologische Einheiten des prƤneogenen Beckenuntergrundes. Geologische Themenkarte der Republik Ɩsterreich 1:200.000, Geologische Bundesanstalt, Vienna

    Google ScholarĀ 

  • Yang TY (1985) Finite element structural analysis. Prentice-Hall, Englewood Cliffs, NY

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Young Lee .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, E.Y., Novotny, J., Wagreich, M. (2019). Subsidence Visualization. In: Subsidence Analysis and Visualization. SpringerBriefs in Petroleum Geoscience & Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-76424-5_3

Download citation

Publish with us

Policies and ethics