Skip to main content

Enhancing Mathematical Cognitive Development Through Educational Interventions

  • Chapter
  • First Online:
Neuroscience of Mathematical Cognitive Development

Abstract

In this chapter, we presents theory and research on mathematical interventions, which are programs used to provide supplementary opportunities to children who are struggling with learning mathematical concepts, facts, and procedures either in small groups or individually (Tiers 2 and 3 of the Response to Intervention framework). Fifteen mathematical interventions and curricula for students in Pre-Kindergarten through Post-Secondary levels are listed that meet the Institute of Education Sciences’ What Works Clearinghouse’s standards, with scientific evidence of potentially positive effects on mathematical outcomes. Three additional programs with digital components are highlighted: The Number Race; Fluency and Automaticity through Systematic Teaching with Technology (FASTT Math); and SRA Number Worlds® with Building Blocks®. For each of these programs, we provide an overview, describe the user’s experience, and summarize theoretical frameworks and efficacy studies. Furthermore, we describe how components of the programs are related to neuroscience theory and research on mathematical cognition and development, particularly Dehaene and colleagues’ triple-code model of numerical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44, 75–106. https://doi.org/10.1016/0010-0277(92)90051-I

    Article  PubMed  Google Scholar 

  • Baroody, A. J., Bajwa, N. P., & Eiland, M. (2009). Why can’t Johnny remember the basic facts? Developmental Disabilities Research Reviews, 15, 69–79. https://doi.org/10.1002/ddrr.45

    Article  PubMed  Google Scholar 

  • Barrows, H. S., & Kelson, A. M. (1993). Problem-based learning: A total approach to education. Springfield, IL: Southern Illinois University School of Medicine.

    Google Scholar 

  • Case, R. (1992). Neo-Piagetian theories of child development. In R. J. Sternberg & C. A. Berg (Eds.), Intellectual Development. New York, NY: Columbia University Press.

    Google Scholar 

  • Clements, D. H. (2002). Computers in early childhood mathematics. Contemporary Issues in Early Childhood, 3(2), 160–181.

    Article  Google Scholar 

  • Clements, D. H. (2007). Curriculum research: Toward a framework for “research-based curricula”. Journal for Research in Mathematics Education, 38, 35–70.

    Google Scholar 

  • Clements, D. H., & Sarama, J. (Eds.). (2004). Engaging young children in mathematics: Standards for early childhood mathematics education. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Clements, D. H., & Sarama, J. (2007). Effects of a preschool mathematics curriculum: Summative research on the Building Blocks project. Journal for Research in Mathematics Education, 38(2), 136–163. Retrieved from http://www.jstor.org.proxy.libraries.uc.edu/stable/30034954

  • Clements, D. H., & Sarama, J. (2008). Experimental evaluation of the effects of a research-based preschool mathematics curriculum. American Educational Research Journal, 45(2), 443–494. Retrieved from http://www.jstor.org.proxy.libraries.uc.edu/stable/30069453

    Article  Google Scholar 

  • Clements, D. H., & Sarama, J. (2011). Early childhood mathematics intervention. Science, 333(6045), 968–970. https://doi.org/10.1126/science.1204537

    Article  PubMed  Google Scholar 

  • Clements, D. H., & Sarama, J. (2014). Learning and teaching early math: The learning trajectories approach (2nd ed.). New York, NY: Routledge.

    Google Scholar 

  • Clements, D. H., Sarama, J., Spitler, M. E., Lange, A. A., & Wolfe, C. B. (2011). Mathematics learned by young children in an intervention based on learning trajectories: A large-scale cluster randomized trial. Journal for Research in Mathematics Education, 42(2), 127–166.

    Article  Google Scholar 

  • Clements, D. H., Sarama, J., Wolfe, C. B., & Spitler, M. E. (2013). Longitudinal evaluation of a scale-up model for teaching mathematics with trajectories and technologies: Persistence of effects in the third year. American Educational Research Journal, 50(4), 812–850. https://doi.org/10.3102/0002831212469270

    Article  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42. https://doi.org/10.1016/0010-0277(92)90049-N

    Article  PubMed  Google Scholar 

  • Dehaene, S. (2011). The number sense: How the mind creates mathematics (Rev. ed.). New York, NY: Oxford University Press.

    Google Scholar 

  • Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.

    Google Scholar 

  • Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219–250. https://doi.org/10.1016/S0010-9452(08)70002-9

    Article  PubMed  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506. https://doi.org/10.1080/02643290244000239

    Article  PubMed  Google Scholar 

  • FASTT Math Next Generation Research Foundation paper. (2012). New York, NY: Scholastic Inc. Retrieved from http://www.hmhco.com/products/fastt-math/files/FASTTMathNG_FoundationPaper.pdf

  • Fleischner, J. E., Garnett, K., & Shepard, M. J. (1982). Proficiency in arithmetic basic facts computation of learning disabled children. Focus on Learning Problems in Mathematics, 4, 47–56.

    Google Scholar 

  • Fosnot, C. T., & Dolk, M. (2001). Young mathematicians at work: Constructing number sense. Westport, CT: Heinemann.

    Google Scholar 

  • Fuchs, L., Fuchs, D., & Hollenbeck, K. (2007). Extending responsiveness to intervention to mathematics at first and third grades. Learning Disabilities Research & Practice, 22(1), 13–24.

    Article  Google Scholar 

  • Fuchs, L. S., Fuchs, D., Craddock, C., Hollenbeck, K. N., Hamlett, C. L., & Schatschneider, C. (2008). Effects of small-group tutoring with and without validated classroom instruction on at-risk students’ math problem solving: Are two tiers of prevention better than one? Journal of Educational Psychology, 100, 491–509.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs, L. S., Powell, S. R., Seethaler, P. M., Cirino, P. T., Fletcher, J. M., Fuchs, D., … Zumeta, R. O. (2009). Remediating number combination and word problem deficits among students with mathematics difficulties: A randomized control trial. Journal of Educational Psychology, 101, 561–576.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs, L. S., Powell, S. R., Seethaler, P. M., Cirino, P. T., Fletcher, J. M., Fuchs, D., & Hamlett, C. L. (2010). The effects of strategic counting instruction, with and without deliberate practice, on number combination skill among students with mathematics difficulties. Learning and Individual Differences, 20, 89–100. doi:10.1016/j.lindif.2009.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs, L. S., Seethaler, P. M., Powell, S. R., Fuchs, D., Hamlett, C. L., & Fletcher, J. M. (2008). Effects of preventative tutoring on the mathematical problem solving of third-grade students with math and reading difficulties. Exceptional Children, 74, 155–173.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuson, K. C. (1982). An analysis of the counting-on procedure in addition. In T. H. Carpenter, J. M. Moser, & T. H. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 67–78). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Fuson, K. C. (1988). Children’s counting and concepts of number. New York, NY: Springer.

    Book  Google Scholar 

  • Fuson, K. C. (1992). Research on whole number addition and subtraction. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 243–275). New York, NY: Macmillan.

    Google Scholar 

  • Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 24, 411–429. https://doi.org/10.1016/j.cogdev.2009.10.001

    Article  Google Scholar 

  • Griffin, S. (2004). Building number sense with Number Worlds: A mathematics program for young children. Early Childhood Research Quarterly, 19(1), 173–180. https://doi.org/10.1016/j.ecresq.2004.01.012

    Article  Google Scholar 

  • Griffin, S. (2009). Learning sequences in the acquisition of mathematical knowledge: Using cognitive developmental theory to inform curriculum design for pre-K-6 mathematics education. Mind, Brain, and Education, 3(2), 96–107. https://doi.org/10.1111/mbe.2009.3.issue-210.1111/j.1751-228X.2009.01060.x

    Article  Google Scholar 

  • Griffin, S. (2015). Number Worlds: A prevention/intervention math program for Grades PreK-8. Columbus, OH: SRA/McGraw-Hill.

    Google Scholar 

  • Griffin, S., & Case, R. (1997). Re-thinking the primary school math curriculum: An approach based on cognitive science. Issues in Education, 3, 1–49.

    Google Scholar 

  • Hasselbring, T. S., Goin, L., & Bransford, J. D. (1988). Developing math automaticity in learning handicapped children: The role of computerized drill and practice. Focus on Exceptional Children, 20, 1–7.

    Google Scholar 

  • Kamii, C. (2000). Young children reinvent arithmetic: Implications of Piaget’s theory (2nd ed.). New York, NY: Teachers College Press.

    Google Scholar 

  • Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.

    Google Scholar 

  • Kroeger, L. A., Brown, R. D., & O’Brien, B. A. (2012). Connecting neuroscience, cognitive, and educational theories and research to practice: A review of mathematics intervention programs. Early Education and Development, 23(1), 37–58. https://doi.org/10.1080/10409289.2012.617289

    Article  Google Scholar 

  • Lyon, G. R., Fletcher, J., Fuchs, L., & Chhabra, V. (2006). Learning disabilities. In E. Marsh & R. Barkley (Eds.), Treatment of childhood disorders (3rd ed., pp. 512–594). New York, NY: Guilford Press.

    Google Scholar 

  • Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24, 450–472. https://doi.org/10.1016/j.cogdev.2009.09.003

    Article  Google Scholar 

  • Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York, NY: Routledge.

    Google Scholar 

  • Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication skill. Journal of Experimental Psychology: General, 117, 258–275. https://doi.org/10.1037/0096-3445.117.3.258

    Article  Google Scholar 

  • Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26, 114–145.

    Article  Google Scholar 

  • SRA Number Worlds: Research and efficacy. (2015). McGraw Hill Education. Retrieved from http://ecommerce-prod.mheducation.com.s3.amazonaws.com/unitas/school/program/number-worlds-2015/nw-2015-research-brochure.pdf

  • Swanson, H. L. (2008). Neuroscience and RTI: A complementary role. In E. Fletcher-Janzen & C. R. Reynolds (Eds.), Neuropsychological perspectives on learning disabilities in the era of RTI: Recommendations for diagnosis and intervention (pp. 28–53). Hoboken, NJ: John Wiley & Sons Inc.

    Google Scholar 

  • Torbeyns, J., Verschaffel, L., & Ghesquière, P. (2004). Strategy development in children with mathematical disabilities: Insights from the choice/no-choice method and the chronological-age/ability-level–match design. Journal of Learning Disabilities, 37(2), 119–131. https://doi.org/10.1177/00222194040370020301

    Article  PubMed  Google Scholar 

  • Using the Number Worlds Placement Tests (n.d.). McGraw-Hill. Retrieved from http://ecommerce-prod.mheducation.com.s3.amazonaws.com/unitas/school/explore/sites/number-worlds/number-worlds-placement-tests-by-level.pdf

  • Vaidya, S. R. (2004). Understanding dyscalculia for teaching. Education, 124, 717–720.

    Google Scholar 

  • Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2010). Elementary and middle school mathematics: Teaching developmentally (7th ed.). New York, NY: Pearson Education Inc.

    Google Scholar 

  • Wilson, A., & Dehaene, S. (2004). How it works: Scientific background. Retrieved from http://www.thenumberrace.com/nr/nr_bgnd.php?lang=en

  • Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race,” an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2(20). https://doi.org/10.1186/1744-9081-2-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright, R. J., Ellemor-Collins, D., & Tabor, P. D. (2012). Developing number knowledge: Assessment, teaching & intervention with 7-11 year-olds. London, England: Sage.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kroeger, L., Brown, R.D. (2018). Enhancing Mathematical Cognitive Development Through Educational Interventions. In: Neuroscience of Mathematical Cognitive Development. Springer, Cham. https://doi.org/10.1007/978-3-319-76409-2_7

Download citation

Publish with us

Policies and ethics