Skip to main content

Calculating Topological Invariants with Z2Pack

  • Chapter
  • First Online:

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 190))

Abstract

The topological phase of non-interacting electronic bandstructure can be classified by calculating integer invariants. In this chapter, we introduce the Chern invariant that classifies 2D materials in the absence of symmetry. We then show that this invariant can be used as the building block for the classification of topological insulators, semimetals, and symmetry-protected topological phases. We show how this classification is performed in practice by introducing Z2Pack, a tool which allows calculating topological invariants from \({\mathbf {k}}\cdot \mathbf {p}\) and tight-binding models, as well as first-principles calculations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is not always possible, for example in the case of semimetals where the occupation number changes with \({\mathbf {k}}\). In these cases, one often picks the N lowest energy bands instead.

  2. 2.

    For simplicity, we consider the total Berry phase of all bands. The Berry phase can also be defined for a single band, in which case the sum over bands is dropped.

  3. 3.

    To see this, try calculating the Berry phase for \(\left| u_k\right\rangle = e^{i k / 2} \begin{pmatrix}\cos (k)\\ \sin (k)\end{pmatrix}\), for \(k \in [0, 2\pi ]\).

  4. 4.

    TBmodels was initially developed as part of Z2Pack, but later separated because it can be used outside of the scope of calculating topological invariants.

  5. 5.

    Figures and Text in This Section Are Partly Copied from Previous Work of the Authors [28].

  6. 6.

    Note that this gap in the HWCC spectrum is not related to the band gap of the energy spectrum.

References

  1. B.A. Bernevig, T.L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, New Jercy, 2013)

    Book  Google Scholar 

  2. M. Nakahara, Geometry, Topology and Physics (Taylor and Francis Group, London, 2003)

    MATH  Google Scholar 

  3. F. Bloch, Über die quantenmechanik der elektronen in kristallgittern. Z. Phys. 52(7), 555–600 (1929)

    Article  ADS  Google Scholar 

  4. F.D.M. Haldane, Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61(18), 2015–2018 (1988)

    Article  ADS  Google Scholar 

  5. C.L. Kane, E.J. Mele, \(\mathbb{Z}_2\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  6. C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  7. J. Zak, Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62(23), 2747–2750 (1989)

    Article  ADS  Google Scholar 

  8. S.-S. Chern, Characteristic classes of Hermitian manifolds. Ann. Math. 85–121 (1946)

    Article  MathSciNet  Google Scholar 

  9. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49(6), 405–408 (1982)

    Article  ADS  Google Scholar 

  10. T. Thonhauser, D. Vanderbilt, Insulator/Chern-insulator transition in the Haldane model. Phys. Rev. B 74(23), 235111 (2006)

    Article  ADS  Google Scholar 

  11. D.J. Thouless, Wannier functions for magnetic sub-bands. J. Phys. C 17(12), L325 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Gresch, G. Autès, O.V. Yazyev, M. Troyer, D. Vanderbilt, B.A. Bernevig, A.A. Soluyanov, Z2Pack: numerical implementation of hybrid Wannier centers for identifying topological materials. Phys. Rev. B 95, 075146 (2017)

    Article  ADS  Google Scholar 

  13. A.A. Soluyanov, D. Vanderbilt, Smooth gauge for topological insulators. Phys. Rev. B 85(11), 115415 (2012)

    Article  ADS  Google Scholar 

  14. G.W. Winkler, A.A. Soluyanov, M. Troyer, Smooth gauge and Wannier functions for topological band structures in arbitrary dimensions. Phys. Rev. B 93(3), 035453 (2016)

    Article  ADS  Google Scholar 

  15. A.A. Soluyanov, Topological Aspects of Band Theory. Ph.D. thesis, Rutgers University-Graduate School-New Brunswick, 2012

    Google Scholar 

  16. A. Alexandradinata, X. Dai, B.A. Bernevig, Wilson-loop characterization of inversion-symmetric topological insulators. Phys. Rev. B 89(15), 155114 (2014)

    Article  ADS  Google Scholar 

  17. R. Leone, The geometry of (non)-Abelian adiabatic pumping. J. Phys. A Math. Theor. 44(29), 295301 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.A. Soluyanov, D. Vanderbilt, Computing topological invariants without inversion symmetry. Phys. Rev. B 83, 235401 (2011)

    Article  ADS  Google Scholar 

  19. A.A. Soluyanov, D. Vanderbilt, Wannier representation of \(\mathbb{Z}_{2}\) topological insulators. Phys. Rev. B 83(3), 035108 (2011)

    Article  ADS  Google Scholar 

  20. N. Marzari, D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56(20), 12847–12865 (1997)

    Article  ADS  Google Scholar 

  21. C. Sgiarovello, M. Peressi, R. Resta, Electron localization in the insulating state: application to crystalline semiconductors. Phys. Rev. B 64(11), 115202 (2001)

    Article  ADS  Google Scholar 

  22. G. Van Rossum et al., Python programming language. in USENIX Annual Technical Conference, vol. 41 (2007)

    Google Scholar 

  23. The Python Tutorial, Accessed 14 Jan 2018

    Google Scholar 

  24. A.A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, N. Marzari, wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178(9), 685–699 (2008)

    Article  ADS  Google Scholar 

  25. A.A. Mostofi, J.R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, N. Marzari, An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185(8), 2309–2310 (2014)

    Article  ADS  Google Scholar 

  26. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  Google Scholar 

  27. J.D. Hunter, Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)

    Article  Google Scholar 

  28. D. Gresch, Identifying Topological States in Matter, Master’s thesis, ETH Zurich, Zurich, 2015

    Google Scholar 

  29. H.B. Nielsen, M. Ninomiya, The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130(6), 389–396 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  30. G. Volovik, Zeros in the Fermion spectrum in superfluid systems as diabolical points. JETP Lett. 46(2) (1987)

    Google Scholar 

  31. A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B.A. Bernevig, Type-II Weyl semimetals. Nature 527(7579), 495–498 (2015)

    Article  ADS  Google Scholar 

  32. A. Alexandradinata, B.A. Bernevig, Berry-phase description of topological crystalline insulators. Phys. Rev. B 93(20), 205104 (2016)

    Article  ADS  Google Scholar 

  33. L. Fu, Topological crystalline insulators. Phys. Rev. Lett. 106(10), 106802 (2011)

    Article  ADS  Google Scholar 

  34. J.C.Y. Teo, L. Fu, C.L. Kane, Surface states and topological invariants in three-dimensional topological insulators: application to Bi\(_{1-x}\)Sb\(_{x}\). Phys. Rev. B 78, 045426 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors were supported by Microsoft Research, the Swiss National Science Foundation through the National Competence Centers in Research MARVEL and QSIT, and the ERC Advanced Grant SIMCOFE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Gresch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gresch, D., Soluyanov, A. (2018). Calculating Topological Invariants with Z2Pack. In: Bercioux, D., Cayssol, J., Vergniory, M., Reyes Calvo, M. (eds) Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-76388-0_3

Download citation

Publish with us

Policies and ethics