Skip to main content

Neuroanatomy of the Trigeminal Nerve and Proximal Innervation of the TMJ

  • Chapter
  • First Online:
Temporomandibular Joint and Airway Disorders

Abstract

The trigeminal nerve is the largest of the 12 cranial nerves. It divides into three branches and provides primarily sensory input into the central nervous system (CNS) from the head and face. The three divisions of the trigeminal nerve run in close proximity to other cranial nerves. The ophthalmic nerve (V1) and maxillary nerve (V2) are purely sensory divisions. However, the mandibular nerve (V3) contains a large sensory and a small motor root. The auriculotemporal nerve (AT), a subdivision of V3, innervates the temporomandibular joint (TMJ), while the motor branch innervates the muscles of mastication.It is very important to understand the neuroanatomy of the trigeminal nerve and its central connections to other portions of the CNS. Trigeminal drive can cause a peripheral overload into the CNS resulting in central sensitization and neuro-inflammation. An understanding of the relevant anatomy and neurology will help clinicians to better understand and treat patients with temporomandibular joint dysfunction and correlated neurological disorders. This chapter covers the neuroanatomy and physiology of the trigeminal nerve system and its central connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AT:

Auriculotemporal

CNS:

Central nervous system

RF:

Reticular formation

TMJ:

Temporomandibular joint

VPM:

Ventralis posteromedialis

References

  1. Saleem N. Loney E, Chuah JH. The auriculotemporal nerve—where is it, what does it do and why should we know about it? Eur Soc Radiol. ECR 2014/C-2122. doi: 10.1594/ecr2014/C-2122.

    Google Scholar 

  2. Patestas MA, Gartner LP. A textbook of neuroanatomy. Malden: Blackwell; 2006.

    Google Scholar 

  3. Dixon AD. Fine structure of nerve-cell bodies and satellite cells in the trigeminal ganglion. J Dent Res. 1963;42:990–9.

    Article  Google Scholar 

  4. Kerr FWL. The divisional organization of afferent fibres of the trigeminal nerve. Brain. 1963;86:721–32.

    Article  Google Scholar 

  5. Moses HL. Comparative fine structure of the trigeminal ganglion, including autopsy studies. J Neurosurg. 1967;26:112–26.

    Article  Google Scholar 

  6. Romanes GJ. The peripheral nervous system: trigeminal nerve. In: Romanes GJ, editor. Cunningham’s textbook of anatomy. Ed 12 ed. Oxford: Oxford University Press; 1981. p. 748–56.

    Google Scholar 

  7. Hardy DG, Rhoton AL Jr. Microsurgical relationships of the superior cerebellar artery and the trigeminal nerve. J Neurosurg. 1978;49:669–78.

    Article  Google Scholar 

  8. Umansky F, Nathan H. The lateral wall of the cavernous sinus: with special reference to the nerves related to it. J Neurosurg. 1982;56:228–34.

    Article  Google Scholar 

  9. Lui GT. The trigeminal nerve and its central connections (Chapter 25). In: Miller NR, Newman NJ, editors. Walsh & Hoyt’s Clinical neuro-ophthalmology. 6th ed; 2005. p. 1233–74.

    Google Scholar 

  10. Harris FS, Rhoton AL. Anatomy of the cavernous sinus: a microsurgical study. J Neurosurg. 1976;45(2):169–80.

    Article  Google Scholar 

  11. Ruskell GL. Ocular fibers of the maxillary nerves in monkeys. J Anat. 1974;118:195–203.

    PubMed  PubMed Central  Google Scholar 

  12. Simons T, Ruskell GL. Distribution and termination of trigeminal nerves to the cerebral arteries in monkeys. J Anat. 1988;159:57–71.

    PubMed  PubMed Central  Google Scholar 

  13. Whitnall SE. The anatomy of the human orbit and accessory organ of vision. 2nd ed. New York: Oxford University Press; 1932. p. 347–72.

    Google Scholar 

  14. Ginsberg LE, Pruett SW, Chen MYM, et al. Skull-base foramina of the middle cranial fossa: reassessment of normal variation with high-resolution CT. Am J Neuroradiol. 1994;15:283–91.

    PubMed  Google Scholar 

  15. Moiseiwitsch J, Irvine T. Clinical significance of the length of the pterygopalat ine fissue in dental anesthesia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92:325–8.

    Article  Google Scholar 

  16. Marfurt CF, Kingsley RE, Echtenkamp SE. Sensory and sympathetic innervation of the mammalian cornea: a retrograde tracing study. Invest Ophthalmol Vis Sci. 1989;30:461–72.

    PubMed  Google Scholar 

  17. Morgan C, Jannetta PJ, deGroat WC. Organization of corneal afferent axons in the trigeminal nerve root entry zone in the cat. Exp Brain Res. 1987;68:411–6.

    Article  Google Scholar 

  18. Ruskell GL, Simons T. Trigeminal nerve pathways to the cerebral arteries in monkeys. J Anat. 1987;155:23–37.

    PubMed  PubMed Central  Google Scholar 

  19. Penfield W, McNaughton F. Dural headache and innervation of the dura mater. Arch Neurol Psychiatry. 1940;44:43–75.

    Article  Google Scholar 

  20. Kuntz A. Anatomic and physiologic properties of cutaneo-visceral vasomotr reflex ARCS. J Neurophysiol. 1945;8(6):421–9.

    Article  Google Scholar 

  21. Kuchiiwa S, Kuchiiwa T, Nonaka S, Nakagawa S. Facial nerve parasympathetic preganglionic afferents to the accessory otic ganglia by way of the chorda tympani nerve in the cat. Anat Embryol. 1998;197:377–82.

    Article  Google Scholar 

  22. Kuntz A, Richins CA. Components and distribution of the nerves of the parotid and submandibular glands. J Comp Neurol. 1946;85(1):21–32.

    Article  Google Scholar 

  23. Komarnitki I, Andrzejczak-Sobocińska A, Tomczyk J, Deszczyńska K, Ciszek B. Clinical anatomy of the auriculotemporal nerve in the area of the infratemporal fossa. Folia Morphol. 2012;71(3):187–93.

    Google Scholar 

  24. Schmalfuss IM, Tart RP, Mukherji S, et al. Perineural tumor spread along the auriculotemporal nerve. Am J Neuroradiol. 2002;23:303–11.

    PubMed  Google Scholar 

  25. Schmidt BL, Pogrel MA, Necoechea M, et al. The distribution of the auriculo-temporal nerve around the temporomandibular joint. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;86:165–8.

    Article  Google Scholar 

  26. Isberg A. Temporomandibular joint dysfunction: a practitioner’s guide (Chapter 2). Pain from the temporomandibular joint region. London: Isis Medical Media; 2001. p. 13–4.

    Book  Google Scholar 

  27. Klineberg I, Lillie J. Regional nerve block of the temporomandibular joint capsule: a technique for clinical research and differential diagnosis. J Dent Res. 1980;59:111930–5. https://doi.org/10.1177/00220345800590110101.

    Article  Google Scholar 

  28. Jannetta PJ. Gross (mesoscopic) description of the human trigeminal ganglion. J Neurosurg. 1967;26:109–15.

    Article  Google Scholar 

  29. Afshar F, Dykes E, Watkins ES. Three-dimensional stereotatic anatomy of the human trigeminal nerve nuclear complex. Appl Neurophysiol. 1983;46:1470153.

    Google Scholar 

  30. Smith RL. Axonal projections and connections of the principal sensory trigeminal nucleus in the monkey. J Comp Neurol. 1975;163:347–76.

    Article  Google Scholar 

  31. Darian-Smith I. The trigeminal system. In: Iggo A, editor. Handbook of sensory physiology, vol. 2. Berlin: Springer; 1973. p. 271–314.

    Google Scholar 

  32. Corbin KB, Harrison F. Function of mesencephalic root of the fifth cranial nerve. J Neurophysiol. 1940;3(5):423–35.

    Article  Google Scholar 

  33. Jerge CR. Organization and function of the trigeminal mesencephalic nucleus. J Neurophysiol. 1963;26(3):379–92.

    Article  Google Scholar 

  34. Dallel R, Raboisson P, Woda A. The rostal part of the trigeminal sensory complex is involved in orofacial nociception. Brain Res. 1988;448(1):7–19.

    Article  Google Scholar 

  35. Gobel S, Purvis MB. Anatomical studies of the organization of the spinal V nucleus: the deep bundles and the spinal V tract. Brain Res. 1972;48:27–44.

    Article  Google Scholar 

  36. Ikeda M, Tanami T, Matsushita M. Ascending and descending internuclear connections of the trigeminal sensory nuclei in the cat. A study with the retrograde and anterograde horseradish peroxidase technique. Neuroscience. 1984;12(4):1243–60.

    Article  Google Scholar 

  37. Silverman JD, Kruger L. Projections of the rat trigeminal sensory nuclear complex demonstrated by multiple fluorescent dye retrograde transport. Brain Res. 1985;361(1-2):383–8.

    Article  Google Scholar 

  38. Steindler DA. Trigeminocerebellar, trigemintectal, and trigeminothalamic projections: a double retrograde axonal tracing study in the mouse. J Comp Neurol. 1985;237(2):155–75.

    Article  Google Scholar 

  39. Taren JA, Kahn EA. Anatomic pathways related to pain in the face and neck. J Neurosurg. 1962;19(2):116–21.

    Article  Google Scholar 

  40. Olszewski J, Baxter D. Cytoarchitecture of the human brainstem. Neuroepidemiology. 2014;42(2):69–138. (3rd, revised and extended edition).

    Article  Google Scholar 

  41. Jenkinsson N, Nandi D, Muthusamy K, Ray NJ, Gregory R, Stein JF, Aziz TZ. Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus. Mov Disord. 2009;24(3):319–28.

    Article  Google Scholar 

  42. Scheibel ME, Scheibel AB. Structural substrates for integrative patterns in the brainstem reticular core. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT, editors. Reticular formation of the brain. Boston: Little & Brown; 1958. p. 31–55.

    Google Scholar 

  43. Nieuwenhuys R, Voogd J, Van Huijzen C. The reticular formation and the monoaminergic and cholinergic cell groups. In: Nieuwenhuys R, Voogd J, van Huijzen C, editors. The human central nervous system. Berlin: Springer; 2008. p. 889–916.

    Chapter  Google Scholar 

  44. Holstege G. Descending motor pathways and spinal motor system: limbic and non-limbic components. Prog Brain Res. 1991;87:307–421.

    Article  Google Scholar 

  45. Holstege G, Mouton LJ. Central nervous system control of micturition. Int Rev Neurobiol. 2003;56:123–45.

    Article  Google Scholar 

  46. Sessle BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med. 2000;11:57–91.

    Article  Google Scholar 

  47. Hargreaves KM. Neurochemical factors in injury and inflammation of orofacial tissue. In: Lund JP, Lavigne GJ, Dunbar R, Sessle BJ, editors. Orofaical pian. Basic science to clinical management. Chicago: Quintessence; 2001. p. 59–66.

    Google Scholar 

  48. Lund JP, Sessle BL. Neurophysiological mechanisms related to chronic pain disorders of the temporomandibular joint and masticatory muscles. In: Zarb G, Carlsson G, Sessle BJ, Mohl N, editors. Temporomandibular joint and masticatory muscle disorders. Copenhagen: Munksgaard; 1994. p. 188–207.

    Google Scholar 

  49. Sessle BJ. The Neural basis of temporomandibular joint and masticatory muscles pain. J Orofac Pain. 1999;13:238–45.

    PubMed  Google Scholar 

  50. Svensson P, Sessle BJ. Orofacial pain. In: Miles TS, Nauntofte B, Svensson P, editors. Clinical oral physiology. Copenhagen: Quintessence; 2004. p. 930139.

    Google Scholar 

  51. Cairns BE. Nociceptors in the orofacial region—TMJ and masseter muscle. In: Schmidt RF, Willis WD, editors. Encyclodepia of pain. Heidelberg: Springer; 2007. p. 1410–27. https://doi.org/10.1007/978-3-540-29805-2_2793.

    Chapter  Google Scholar 

  52. Capra NF, Dessem D. Central connections of the trigeminal primary afferent neurons: Topographical and functional considerations. Crit Rev Oral Biol Med. 1992;4:1–52.

    Article  Google Scholar 

  53. Dunbar R, Sessle BJ, Storey AT. The neural basis of oral and facial function. New York: Plenum; 1978.

    Google Scholar 

  54. Shigenaga Y, Sera M, Nishimori T. The central projections of masticatory afferent fibers to the trigeminal sensory nuclear complex and upper cervical spinal cord. J Comp Neurol. 1988;268:489–507.

    Article  Google Scholar 

  55. Craig AD, Dostrovsky JO. Processing of nociceptive information at supraspinal levels. In: Yaksh TL, Lynch III C, Zapol WM, editors. Anesthesia: biologic foundations. Philadelphia: Lippincott-Raven; 1997. p. 625–42.

    Google Scholar 

  56. Hannan AG, Sessle BJ. Temporomandibular neurosurgery and neuromuscular physiology. In: Zarb G, Carlsson G, Sessle BJ, Mohl N, editors. Temporomandibular joint and masticatory muscle disorders. Copenhagen: Munksgaard; 1994. p. 67–100.

    Google Scholar 

  57. Brodal PR. The central nervous system: structure and function. 3rd ed. New York: Oxford University Press; 2004.

    Google Scholar 

  58. Jahn K, Zwergal A. Imaging supraspinal locomotor control in balance disorders. Restor Neurol Neurosci. 2010;28:105–14.

    PubMed  Google Scholar 

  59. Tecco S, Tetè S, D’Attilio M, Perillo L, Festa F. Surface electromyographic patterns of masticatory, neck, and trunk muscles in temporomandibular joint dysfunction patients undergoing anterior repositioning splint therapy. Eur J Orthod. 2008;30:592–7.

    Article  Google Scholar 

  60. Mainero C, Zhang WT, Kumar A, Rosen BR, Sorensen AG. Mapping the spinal and supraspinal pathways of dynamic mechanical allodynia in the human trigeminal system using cardiac-gated fMRI. Neuroimaging. 2007;35:1201–10.

    Article  Google Scholar 

  61. Pinto ML, Olyntho-Tokunaga HH, Souccar C, Schoorlemmer GH, Lapa Rde C. The interstitial system of the trigeminal spinal tract projects to the red nucleus in mice. Somatosens Mot Res. 2007;24:221–5.

    Article  Google Scholar 

  62. Siegel JM, Tomaszewski KS. Behavioral organization of reticular formation: studies in the unrestrained cat. I. Cells related to axial, limb, eye, and other movements. J Neurophysiol. 1983;50:696–716.

    Article  Google Scholar 

  63. Buisseret-Delmas C, Compoint C, Delfini C, Buisseret P. Organization of reciprocal connections between trigeminal and vestibular nuclei in the rat. J Comp Neurol. 1999;409(1):153–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gary Demerjian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demerjian, G.G., Barkhordarian, A., Chiappelli, F. (2018). Neuroanatomy of the Trigeminal Nerve and Proximal Innervation of the TMJ. In: Demerjian, G., Barkhordarian, A., Chiappelli, F. (eds) Temporomandibular Joint and Airway Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-76367-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76367-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76365-1

  • Online ISBN: 978-3-319-76367-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics