Asymptotics of Linear Resampling Statistics

  • Thorsten Dickhaus


We introduce linear resampling statistics, which can formally be regarded as linear rank statistics with random scores. Asymptotic effectiveness of resulting (conditional) resampling tests is considered in a general manner by means of (conditional) central limit theorems. Several examples are discussed in detail, and concrete algorithms are developed for practical data analysis. The problem of non-exchangeability under the null in multi-sample problems can be addressed by appropriate Studentization techniques.


  1. Efron B (1977) Bootstrap methods: another look at the jackknife. Technical report 37, Department of Statistics, Stanford UniversityGoogle Scholar
  2. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26.
  3. Hall P (1988) Theoretical comparison of bootstrap confidence intervals. Ann Stat 16(3):927–953Google Scholar
  4. Hall P, Wilson SR (1991) Two guidelines for bootstrap hypothesis testing. Biometrics 47(2): 757–762Google Scholar
  5. Janssen A (1997) Studentized permutation tests for non-i.i.d. hypotheses and the generalized Behrens-Fisher problem. Stat Probab Lett 36(1):9–21.
  6. Janssen A (1998) Zur Asymptotik nichtparametrischer Tests, Lecture notes. Skripten zur Stochastik Nr. 29. Gesellschaft zur Förderung der Mathematischen Statistik, MünsterGoogle Scholar
  7. Janssen A (2005) Resampling Student’s t-type statistics. Ann Inst Stat Math 57(3): 507–529.
  8. Janssen A, Pauls T (2003) How do bootstrap and permutation tests work? Ann Stat 31(3):768–806.
  9. Pauls T (2003) Resampling-Verfahren und ihre Anwendungen in der nichtparametrischen Testtheorie. Books on Demand, NorderstedtGoogle Scholar
  10. Pauly M (2009) Eine Analyse bedingter Tests mit bedingten Zentralen Grenzwertsätzen für Resampling-Statistiken. PhD thesis, Heinrich Heine Universität DüsseldorfGoogle Scholar
  11. Pitman E (1937) Significance tests which may be applied to samples from any populations. J R Stat Soc 4(1):119–130Google Scholar
  12. Romano JP (1990) On the behavior of randomization tests without a group invariance assumption. J Am Stat Assoc 85(411):686–692.
  13. Singh K (1981) On the asymptotic accuracy of Efron’s bootstrap. Ann. Stat. 9(6):1187–1195Google Scholar
  14. Witting H, Müller-Funk U (1995) Mathematische Statistik II. Asymptotische Statistik: Parametrische Modelle und nichtparametrische Funktionale. B. G. Teubner, StuttgartGoogle Scholar
  15. Witting H, Nölle G (1970) Angewandte Mathematische Statistik. Optimale finite und asymptotische Verfahren. Leitfäden der angewandten Mathematik und Mechanik. Bd. 14. B. G. Teubner, StuttgartGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thorsten Dickhaus
    • 1
  1. 1.Institute for StatisticsUniversity of BremenBremenGermany

Personalised recommendations