Introduction and Examples

  • Thorsten Dickhaus


In this introductory chapter, we first recall some basic concepts from mathematical statistics regarding statistical decision theory and, in particular, statistical test theory. Then, we deal with the concepts of conditional distributions and conditional expectations in a general manner. The treatment is based on a construction by means of Markov kernels. Finally, we give an introduction to the theory of nonparametric tests, and we discuss the specific examples of bootstrap tests (for one-sample problems) and permutation tests (for multi-sample problems) on a conceptual level.


  1. Aitchison J (1964) Confidence-region tests. J R Stat Soc Ser B 26:462–476Google Scholar
  2. Barbe P, Bertail P (1995) The weighted bootstrap. Springer, BerlinGoogle Scholar
  3. Basu A, Shioya H, Park C (2011) Statistical inference. The minimum distance approach. CRC Press, Boca Raton, FL.
  4. Berry KJ, Mielke PW Jr, Johnston JE (2016) Permutation statistical methods. An integrated approach. Springer, Cham.
  5. Brunner E, Munzel U (2013) Nichtparametrische Datenanalyse. Unverbundene Stichproben, 2nd edn. Springer Spektrum, Heidelberg.
  6. Büning H (1991) Robuste und adaptive Tests. de Gruyter, BerlinGoogle Scholar
  7. Büning H, Trenkler G (1994) Nichtparametrische statistische Methoden, 2nd edn. de Gruyter, BerlinGoogle Scholar
  8. D’Agostino RB, Stephens MA (eds) (1986) Goodness-of-fit techniques. Statistics: textbooks and monographs, vol 68. Marcel Dekker, New York, NYGoogle Scholar
  9. Davison A, Hinkley D (1997) Bootstrap methods and their application. Cambridge University Press, CambridgeGoogle Scholar
  10. Duller C (2008) Einführung in die nichtparametrische Statistik mit SAS und R. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. Physica, HeidelbergGoogle Scholar
  11. Edgington ES, Onghena P (2007) Randomization tests. With CD-ROM, 4th edn. Chapman & Hall/CRC, Boca Raton, FLGoogle Scholar
  12. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Monographs on statistics and applied probability, vol 57. Chapman & Hall, New York, NYGoogle Scholar
  13. Good P (2005) Permutation, parametric and bootstrap tests of hypotheses, 3rd edn. Springer, New York, NY.
  14. Good PI (2006) Resampling methods. A practical guide to data analysis, 3rd edn. Birkhäuser, Boston, MAGoogle Scholar
  15. Hájek J, Šidák Z, Sen PK (1999) Theory of rank tests, 2nd edn. Elsevier/Academic Press, Orlando, FLGoogle Scholar
  16. Hall P (1988) Theoretical comparison of bootstrap confidence intervals. Ann Stat 16(3):927–953Google Scholar
  17. Hall P (1992) The bootstrap and Edgeworth expansion. Springer series in statistics. Springer, New York, NYGoogle Scholar
  18. Hollander M, Wolfe DA, Chicken E (2014) Nonparametric statistical methods, 3rd updated edn. John Wiley & Sons, Hoboken, NJGoogle Scholar
  19. Klenke A (2008) Probability theory (Wahrscheinlichkeitstheorie), 2nd revised edn. Springer, BerlinGoogle Scholar
  20. Krishnaiah P, Sen P (eds) (1984) Nonparametric methods. Handbook of statistics, vol 4. North-Holland, AmsterdamGoogle Scholar
  21. Küchler U (2016) Maßtheorie für Statistiker. Grundlagen der Stochastik. Springer Spektrum, Heidelberg.
  22. Lahiri S (2003) Resampling methods for dependent data. Springer, New York, NYGoogle Scholar
  23. Lehmann EL (2006) Nonparametrics. Statistical methods based on ranks. With the special assistance of H. J. M. D’Abrera, 1st revised edn. Springer, New York, NYGoogle Scholar
  24. LePage R, Billard L (eds) (1992) Exploring the limits of bootstrap: papers presented at a special topics meeting, East Lansing, UK, May 1990. Wiley, New York, NYGoogle Scholar
  25. Mammen E (1992) When does bootstrap work? Asymptotic results and simulations. Springer, New York, NYGoogle Scholar
  26. Neuhäuser M (2012) Nonparametric statistical tests. A computational approach. CRC Press, Boca Raton, FLGoogle Scholar
  27. Owen AB (2001) Empirical likelihood. Chapman & Hall/CRC, Boca Raton, FLGoogle Scholar
  28. Pardo L (2006) Statistical inference based on divergence measures. Chapman & Hall/CRC, Boca Raton, FLGoogle Scholar
  29. Pesarin F, Salmaso L (2010) Permutation tests for complex data: theory, applications and software. Wiley series in probability and statistics. John Wiley & Sons, ChichesterGoogle Scholar
  30. Politis DN, Romano JP, Wolf M (1999) Subsampling. Springer, New York, NYGoogle Scholar
  31. Puri M (ed) (1970) Nonparametric techniques in statistical inference. In: Proceedings of the first international symposium on nonparametric techniques held at Indiana University, June 1969. University Press, CambridgeGoogle Scholar
  32. Student (1908) The probable error of a mean. Biometrika 6:1–25Google Scholar
  33. Wilcox R (2012) Introduction to robust estimation and hypothesis testing, 3rd edn. Elsevier/Academic Press, AmsterdamGoogle Scholar
  34. Witting H (1985) Mathematische Statistik I: Parametrische Verfahren bei festem Stichprobenumfang. B. G. Teubner, StuttgartGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thorsten Dickhaus
    • 1
  1. 1.Institute for StatisticsUniversity of BremenBremenGermany

Personalised recommendations