Loading a Trap with Particles

  • Manuel Vogel
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)


Obviously, there are two options to arrive at a situation in which particles can be confined, namely to produce them inside the trap where they remain confined, or to capture and confine particles that have been produced externally. We will see that internal production is somewhat limited in terms of the available particle species that may be produced under the circumstances inside a trap, while for external production, options are nearly unlimited, however a defined capture process is required prior to confinement.


  1. 1.
    D.A. Davies et al., A high-power laser ablation ion source for Penning trap studies of nuclear reaction products. J. Phys.: Conf. Ser. 59, 136 (2007)Google Scholar
  2. 2.
    C.G. Gill, A.W. Garrett, P.H. Hemberger, N.S. Nogar, Selective laser ablation/ionization for ion trap mass spectrometry: resonant laser ablation. Spectrochim. Acta Part B: At. Spectrosc. 51, 851 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    J. Alonso et al., A miniature electron beam ion source for in-trap creation of highly charged ions. Rev. Sci. Inst. 77, 03A901 (2006)CrossRefGoogle Scholar
  4. 4.
    B. Schabinger et al., Creation of highly-charged calcium ions for the g-factor determination of the bound electron. J. Phys. Conf. Ser. 163, 012108 (2009)CrossRefGoogle Scholar
  5. 5.
    N. Kjaergaard et al., Isotope selective loading of an ion trap using resonance-enhanced two-photon ionization. Appl. Phys. B 71, 207 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    S. Removille et al., Photoionisation loading of large Sr\(^+\) ion clouds with ultrafast pulses. Appl. Phys. B 97, 47 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    S. Gulde et al., Simple and efficient photo-ionization loading of ions for precision ion-trapping experiments. Appl. Phys. B 73, 861 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    J. Estrada, T. Roach, J.N. Tan, P. Yesley, G. Gabrielse, Field ionization of strongly magnetized Rydberg positronium: a new physical mechanism for positron accumulation. Phys. Rev. Lett. 84, 859 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    C.R. Crowell, The Richardson constant for thermionic emission in Schottky barrier diodes. Solid-State Electron. 8, 395 (1965)ADSCrossRefGoogle Scholar
  10. 10.
    T. Murböck, S. Schmidt, Z. Andelkovic, G. Birkl, W. Nörtershäuser, M. Vogel, A compact source for bunches of singly charged atomic ions. Rev. Sci. Inst. 87, 043302 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    F.J. Blatt, Field emission in a magnetic field. Phys. Rev. 131, 166 (1963)ADSCrossRefGoogle Scholar
  12. 12.
    R.F. Waitest, H.A. Schwettman, Field emission from bismuth and tungsten in a magnetic field. Phys. Rev. B 8, 2420 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    D. Temple, Recent progress in field emitter array development for high performance applications. Mater. Sci. Eng. R24, 185 (1999)CrossRefGoogle Scholar
  14. 14.
    W. Lotz, An empirical formula for the electron-impact ionization cross-section. Z. Phys. 206, 205 (1967)ADSCrossRefGoogle Scholar
  15. 15.
    V.A. Bernshtam, YuV Ralchenko, Y. Maron, Empirical formula for cross section of direct electron-impact ionization of ions. J. Phys. B 33, 5025 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Levine et al., The electron beam ion trap: a new instrument for atomic physics measurements. Physica Scripta T22, 157 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    E.D. Donets, in The Physics and Technology of Ion Sources, ed. by I.G. Brown (Wiley, New York, 1989)Google Scholar
  18. 18.
    R. Becker, in Handbook of Ion Sources, ed. by B. Wolf (CRC Press, Boca Raton, NY, London, Tokyo, 1995)Google Scholar
  19. 19.
    R. Becker, O. Kester, Th. Stöhlker, Simulation of charge breeding for trapped ions. J. Phys.: Conf. Ser. 58, 443 (2007)Google Scholar
  20. 20.
    A. Herlert, K. Hansen, L. Schweikhard, M. Vogel, Multiply charged titanium cluster anions: production and photodetachment. Hyp. Int. 127, 529 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    A. Herlert et al., First observation of doubly charged negative gold cluster ions. Physica Scripta T80, 200 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    B. Wolf, in Handbook of Ion Sources, (CRC Press, Boca Raton, ISBN 978-0-8493-2502-1, 1995)Google Scholar
  23. 23.
    H. Schnatz et al., Inflight capture of ions into a Penning trap. Nucl. Inst. Meth. A 251, 17 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    M. Rosenbusch et al., Ion bunch stacking in a Penning trap after purification in an electrostatic mirror trap. Appl. Phys. B 114, 147 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    H.-U. Hasse et al., External-ion accumulation in a Penning trap with quadrupole excitation assisted buffer gas cooling. Int. J. Mass Spectrom. Ion Proc. 132, 181 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    S. Schmidt et al., Sympathetic cooling in two-species ion crystals in a Penning trap. J. Mod. Opt. (2017).
  27. 27.
    H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    D. von Lindenfels et al., Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Phys. Rev. A 87, 023412 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    E. Majorana, Atomi orientati in campo magnetico variabile. Nuovo Cimento 9, 43 (1932)CrossRefzbMATHGoogle Scholar
  30. 30.
    V. Gomer et al., Magnetostatic traps for charged and neutral particles. Hyp. Int. 109, 281 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    D. Boccaletti, G. Pucacco, The theory of adiabatic invariants, in Theory of Orbits, Astronomy and astrophysics library (Springer, Berlin, Heidelberg, 1999)Google Scholar
  32. 32.
    T. Murböck, Preparation and cooling of magnesium ion crystals for sympathetic cooling of highly charged ions in a Penning trap, Ph.D. thesis (Technische Universität Darmstadt, 2016)Google Scholar
  33. 33.
    G. Gabrielse, Detection, damping, and translating the center of the axial oscillation of a charged particle in a Penning trap with hyperbolic electrodes. Phys. Rev. A 29, 462 (1984)ADSCrossRefGoogle Scholar
  34. 34.
    M. Mukherjee et al., ISOLTRAP: an on-line Penning trap for mass spectrometry on short-lived nuclides. Eur. Phys. J. A 35, 1 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    F. Herfurth et al., A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Inst. Meth. A 469, 254 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    H.J. Kluge et al., HITRAP: a facility at GSI for highly charged ions. Adv. Quantum Chem. 53, 83 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    L. Gruber, J.P. Holder, D. Schneider, Formation of strongly coupled plasmas from multi-component ions in a Penning trap. Physica Scripta 71, 60 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    D. Schneider et al., Confinement in a cryogenic penning trap of highest charge state ions from EBIT. Rev. Sci. Inst. 65, 3472 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    T. Murböck et al., Rapid crystallization of externally produced ions in a Penning trap. Phys. Rev. A 94, 043410 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    S. Schmidt et al., Non-destructive single-pass electronic detection of ions in a beamline. Rev. Sci. Inst. 86, 113302 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations