Advertisement

Particle Ensembles in Penning Traps

  • Manuel Vogel
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)

Abstract

In contrast to the situation with a single particle in a trap, the presence of many charged particles gives rise to long-range particle-particle interactions, collective effects, and partial shielding of the trap potential that leads to shifts of the oscillation frequencies. Here, we briefly discuss the most important collective effects and review the treatment of ion ensembles as non-neutral plasmas that show phase transitions between phases including a crystal-like state.

References

  1. 1.
    J.B. Jeffries, S.E. Barlow and G.H. Dunn, Theory of space charge shift of ion cyclotron resonances, Int. J. Mass Spectrom. Ion Process. 54, 169 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    J. Yu, M. Desaintfuscien and F. Plumelle, Ion density limitation in a Penning trap due to the combined effect of asymmetry and space charge, Appl. Phys. B 48, 51 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    D.F.A. Winters, M. Vogel, D.M. Segal, R.C. Thompson, Electronic detection of charged particle effects in a Penning trap, J. Phys. B 39, 3131 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    R.S. Van Dyck Jr., F.L. Moore, D.L. Farnham, P.B. Schwinberg, Number dependency in the compensated Penning trap, Phys. Rev. A 40, 6308 (1989)Google Scholar
  5. 5.
    T.J. Francl et al., Experimental determination of the effects of space charge on ion cyclotron resonance frequencies, Int. J. Mass Spectrom. Ion Proc. 54, 189 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    P. Ghosh, Ion Traps, Oxford University Press, Oxford (1995)Google Scholar
  7. 7.
    G. Werth, V.N. Gheorghe and F.G. Major, Charged Particle Traps, Springer, Heidelberg (2005)Google Scholar
  8. 8.
    G.-Z. Li, S. Guan and A.G. Marshall, Comparison of Equilibrium Ion Density Distribution and Trapping Force in Penning, Paul, and Combined Ion Traps, J. Am. Soc. Mass. Spectrom. 9, 473 (1998)CrossRefGoogle Scholar
  9. 9.
    K. Dholakia, G.Zs.K. Horvath, D. M. Segal, R. C. Thompson, D. M. Warrington, and D. C. Wilson, Photon-correlation detection of ion-oscillation frequencies in quadrupole ion traps, Phys. Rev. A 47, 441 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    M. Kretzschmar, Ideal Gas Approximation for an Ion Cloud in a Penning Trap, Z. Naturf. 45a, 965 (1990)Google Scholar
  11. 11.
    P. Paasche et al., Instabilities of an electron cloud in a Penning trap, Eur. Phys. J. D 22, 183 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    H. Hübner et al., Instabilities of ion confinement in a Penning trap, Europhys. Lett. 37, 459 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    G. Tommaseo, P. Paasche, C. Angelescu and G. Werth, Subharmonic excitation of the eigenmodes of charged particles in a Penning trap, Eur. Phys. J. D 28, 39 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    G. Werth, V.N. Gheorghe and F.G. Major, Charged Particle Traps II, Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    L. Schweikhard, J. Ziegler, H. Bopp, and K. Lützenkirchen, The trapping condition and a new instability of the ion motion in the ion cyclotron resonance trap, Int. J. Mass Spectrom. Ion Proc. 141, 77 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    H.M. Holzscheiter, Ion confinement in a marginally stable Penning trap, Nucl. Inst. Meth. A 240, 457 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    T. Hasegawa, M.J. Jensen, and J.J. Bollinger, Stability of a Penning trap with a quadrupole rotating electric field, Phys. Rev. A 71, 023406 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    T.M. Squires, P. Yesley and G. Gabrielse, Stability of a Combined Penning-Ioffe Trap, Phys. Rev. Lett. 86, 5266 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    J.H. Malmberg and J.S. deGrassie, Properties of Nonneutral Plasma, Phys. Rev. Lett. 35, 577 (1975)Google Scholar
  20. 20.
    J.J. Bollinger et al., Electrostatic modes of ion-trap plasmas, Phys. Rev. A 48, 525 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    B.M. Jelenkovic et al., Sympathetically laser-cooled positrons, Nucl. Inst. Meth. B 192, 117127 (2002)CrossRefGoogle Scholar
  22. 22.
    G.B. Andresen et al., Centrifugal separation and equilibration dynamics in an electron-antiproton plasma, Phys. Rev. Lett. 106, 145001 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    D.H.E. Dubin, Plasmas in Penning traps, in: Trapped Charged Particles, M. Knoop, N. Madsen and R.C. Thompson, eds., World Scientific (2016)Google Scholar
  24. 24.
    A.W. Trivelpiece and R.W. Gould, Space Charge Waves in Cylindrical Plasma Columns, J. Appl. Phys. 30, 1784 (1959)ADSCrossRefGoogle Scholar
  25. 25.
    D.H.E. Dubin, Theory of electrostatic fluid modes in a cold spheroidal non-neutral plasma, Phys. Rev. Lett. 66, 2076 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    D.H.E. Dubin, Plasmas Modes, in: Trapped Charged Particles, M. Knoop, N. Madsen and R.C. Thompson, eds., World Scientific (2016)Google Scholar
  27. 27.
    R.J. Hendricks, E.S. Phillips, D.M. Segal and R.C. Thompson, Laser cooling in the Penning trap: an analytical model for cooling rates in the presence of an axializing field, J. Phys. B 41, 035301 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    J.J. Bollinger et al., Nonneutral ion plasmas and crystals in Penning traps, Physica Scripta T59, 352 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    L. Gruber et al., Evidence for Highly Charged Ion Coulomb Crystallization in Multicomponent Strongly Coupled Plasmas, Phys. Rev. Lett. 86, 636 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    D.H.E. Dubin and T.M. O’Neil, Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states), Rev. Mod. Phys. 71, 87 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    T.M. O’Neil and D.H.E. Dubin, Thermal equilibria and thermodynamics of trapped plasmas with a single sign of charge, Phys. Plasmas 5, 2163 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    L.R. Brewer et al., Static properties of a non-neutral \(^9\)Be\(^+\) ion plasma, Phys. Rev. A 38, 859 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    X.P. Huang et al., Steady-State Confinement of Non-neutral Plasmas by Rotating Electric Fields, Phys. Rev. Lett. 78, 875 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    X.P. Huang, J. J. Bollinger, T.B. Mitchell and W.M. Itano, Phase-Locked Rotation of Crystallized Non-neutral Plasmas by Rotating Electric Fields, Phys. Rev. Lett. 80, 73 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    X.P. Huang et al., Precise control of the global rotation of strongly coupled ion plasmas in a Penning trap, Phys. Plasmas 5, 1656 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    F. Anderegg, E.M. Hollmann and C.F. Driscoll, Rotating Field Confinement of Pure Electron Plasmas Using Trivelpiece-Gould Modes, Phys. Rev. Lett. 81, 4875 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    E.M. Hollmann, F. Anderegg and C.F. Driscoll, Confinement and manipulation of non-neutral plasmas using rotating wall electric fields, Phys. Plasmas 7, 2776 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    D.J. Heinzen et al., Rotational equilibria and low-order modes of a non-neutral ion plasma, Phys. Rev. Lett. 66, 2080 (1991)ADSCrossRefGoogle Scholar
  39. 39.
    M.D. Tinkle, R.G. Greaves and C.M. Surko, Modes of spheroidal ion plasmas at the Brillouin limit, Phys. Plasmas 3, 749 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    D.H.E. Dubin and J.P. Schiffer, Normal modes of cold confined one-component plasmas, Phys. Rev. E 53, 5249 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    P.M. Bellan, Fundamentals of Plasma Physics, Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  42. 42.
    J.H. Malmberg und T.M. O’Neil, Pure Electron Plasma, Liquid, and Crystal, Phys. Rev. Lett. 39, 1333 (1977)Google Scholar
  43. 43.
    C. Kittel, Introduction to solid state physics, 8th edition, John Wiley & Sons (2005)Google Scholar
  44. 44.
    S.L. Gilbert, J.J. Bollinger, and D.J. Wineland, Shell-Structure Phase of Magnetically Confined Strongly Coupled Plasmas, Phys. Rev. Lett. 60, 2022 (1988)ADSCrossRefGoogle Scholar
  45. 45.
    M.J. Jensen, T. Hasegawa, J.J. Bollinger and D.H.E. Dubin, Rapid Heating of a Strongly Coupled Plasma near the Solid-Liquid Phase Transition, Phys. Rev. Lett. 94, 025001 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    P. Gaspard, Lyapunov exponent of ion motion in microplasmas, Phys. Rev. E 68, 056209 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    L. Tonks and I. Langmuir, Oscillations in ionized gases, Phys. Rev. 33, 195 (1929)ADSCrossRefzbMATHGoogle Scholar
  48. 48.
    S.G. Brush, H.L. Sahlin and E. Teller, Monte Carlo Study of a One-Component Plasma, J. Chem. Phys. 45, 2102 (1966)ADSCrossRefGoogle Scholar
  49. 49.
    E.L. Pollock and J.P. Hansen, Statistical Mechanics of Dense Ionized Matter. II. Equilibrium Properties and Melting Transition of the Crystallized One-Component Plasma, Phys. Rev. A 8, 3110 (1973)ADSCrossRefGoogle Scholar
  50. 50.
    W. L. Slattery, G. D. Doolen, and H. E. DeWitt, Improved equation of state for the classical one-component plasma, Phys. Rev. A 21, 2087 (1980)ADSCrossRefGoogle Scholar
  51. 51.
    S. Ichimaru, (ed.) Strongly Coupled Plasma Physics, North-Holland Publ. Co., Amsterdam (1990)Google Scholar
  52. 52.
    F. Diedrich et al., Observation of a Phase Transition of Stored Laser-Cooled Ions, Phys. Rev. Lett. 59, 2931 (1987)ADSCrossRefGoogle Scholar
  53. 53.
    G. Birkl, S. Kassner and H. Walther, Multiple-shell structures of laser-cooled \(^{24}\)Mg\(^+\) ions in a quadrupole storage ring, Nature 357, 310 (1992)ADSCrossRefGoogle Scholar
  54. 54.
    D.H.E. Dubin, Effect of correlations on the thermal equilibrium and normal modes of a non-neutral plasma, Phys. Rev. E 53, 5268 (1996)ADSCrossRefGoogle Scholar
  55. 55.
    D.H.E. Dubin, Correlation energies of simple bounded Coulomb lattices, Phys. Rev. A 40, 1140 (1989)ADSCrossRefGoogle Scholar
  56. 56.
    T.B. Mitchell et al., Direct observations of structural phase transitions in planar crystallized ion plasmas, Science 282, 1290 (1998)ADSCrossRefGoogle Scholar
  57. 57.
    S. Mavadia et al., Control of the conformations of ion Coulomb crystals in a Penning trap, Nat. Comm. 4, 2571 (2013)CrossRefGoogle Scholar
  58. 58.
    L. Hornekaer and M. Drewsen, Formation process of large ion Coulomb crystals in linear Paul traps, Phys. Rev. A 66, 013412 (2002)ADSCrossRefGoogle Scholar
  59. 59.
    M. Drewsen, Ion Coulomb crystals, Physica B: Condensed Matter 460, 105 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    J.J. Bollinger et al., Crystalline order in laser-cooled, non-neutral ion plasmas, Phys. Plasmas 7, 7 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    R.C. Thompson, Ion Coulomb crystals, Contemporary Physics 56, 63 (2015)ADSGoogle Scholar
  62. 62.
    T. Murböck et al., Rapid crystallization of externally produced ions in a Penning trap, Phys. Rev. A 94, 043410 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    J. Tan et al., Long-range order in laser-cooled, atomic-ion Wigner crystals observed by Bragg-scattering, Phys. Rev. Lett. 75, 4198 (1995)ADSCrossRefGoogle Scholar
  64. 64.
    H. Totsuji, T. Kishimoto, C. Totsuji, and K. Tsuruta, Competition between Two Forms of Ordering in Finite Coulomb Clusters, Phys. Rev. Lett. 88, 125002 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    D.H.E. Dubin and T.M. ONeil, Computer simulation of ion clouds in a Penning trap, Phys. Rev. Lett. 60, 511 (1988)Google Scholar
  66. 66.
    R. W. Hasse and V.V. Avilov, Structure and Madelung energy of spherical Coulomb crystals, Phys. Rev. A 44, 4506 (1991)ADSCrossRefGoogle Scholar
  67. 67.
    S. Schmidt et al., Sympathetic cooling in two-species ion crystals in a Penning trap, J. Mod. Opt., https://doi.org/10.1080/09500340.2017.1342877 (2017)Google Scholar
  68. 68.
    L. Schmöger et al., Coulomb crystallization of highly charged ions, Science 347, 1233 (2015)ADSCrossRefGoogle Scholar
  69. 69.
    V.A. Alekseev, D.D. Krylova and V.S. Letokhov, Sympathetic cooling of two trapped ions, Physica Scripta 51, 368 (1995)ADSCrossRefGoogle Scholar
  70. 70.
    J.B. Wübbena, S. Amairi, O. Mandel, and P.O. Schmidt, Sympathetic cooling of mixed-species two-ion crystals for precision spectroscopy, Phys. Rev. A 85, 043412 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    T.M. O’Neil, Centrifugal separation of a multispecies pure ion plasma, Phys. Fluids 24, 1447 (1981)ADSCrossRefzbMATHGoogle Scholar
  72. 72.
    D.J. Larson, J.C. Bergquist, J.J. Bollinger, W.M. Itano, and D.J. Wineland, Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma, Phys. Rev. Lett. 57, 70 (1986)ADSCrossRefGoogle Scholar
  73. 73.
    H. Imajo et al., Spatial separation of ion clouds between sympathetically laser-cooled Cd\(^+\)-ion isotopes in a Penning trap, Phys. Rev. A 55, 1276 (1997)ADSCrossRefGoogle Scholar
  74. 74.
    M. Affolter, F. Anderegg, D.H.E. Dubin, and C.F. Driscoll, Cyclotron mode frequencies and resonant absorption in multi-species ion plasmas, Phys. Plasmas 22, 055701 (2015)ADSCrossRefGoogle Scholar
  75. 75.
    B.M. Jelenkovic, A.S. Newbury, J.J. Bollinger, W.M. Itano, and T.B. Mitchell, Sympathetically cooled and compressed positron plasma, Phys. Rev. A 67, 063406 (2003)ADSCrossRefGoogle Scholar
  76. 76.
    G. Gabrielse et al., Centrifugal separation of antiprotons and electrons, Phys. Rev. Lett. 105, 213002 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    F. Anderegg, Rotating Wall Technique and Centrifugal Separation, in: Trapped Charged Particles, M. Knoop, N. Madsen and R.C. Thompson, eds., World Scientific (2016)Google Scholar
  78. 78.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover (1972)Google Scholar
  79. 79.
    L.R. Brewer et al., Static properties of a non-neutral \(^9\)Be\(^+\)-ion plasma, Phys. Rev. A 38, 859 (1988)ADSCrossRefGoogle Scholar
  80. 80.
    S. Bharadia, M. Vogel, D.M. Segal and R.C. Thompson, Dynamics of laser-cooled Ca\(^+\) ions in a Penning trap with a rotating wall, Appl. Phys. B 107, 1105 (2012)ADSCrossRefGoogle Scholar
  81. 81.
    D.H.E. Dubin and T.M. O’Neil, Trapped nonneutral plasmas, liquids, and crystals, Rev. Mod. Phys. 71, 87 (1999).ADSCrossRefGoogle Scholar
  82. 82.
    G.L. Delzanno, G. Lapenta, and J.M. Finn, KANDINSKY: a PIC code for fluid simulations of Penning traps, IEEE Transactions on Plasma Science 30, 34 (2002)ADSCrossRefGoogle Scholar
  83. 83.
    G. Lapenta, G.L. Delzanno, and J.M. Finn, Nonlinear PIC simulation in a Penning trap, AIP Conference Proceedings 606, 486 (2002)ADSCrossRefGoogle Scholar
  84. 84.
    J. Steinmann, J. Groß, F. Herfurth and G. Zwicknagel, MD simulations of resistive cooling in HITRAP using GPUs, AIP Conf. Proc. 1521, 240 (2013)ADSCrossRefGoogle Scholar
  85. 85.
    J. Steinmann, Modellierung und Simulation der Widerstandskuehlung von hochgeladenen Ionen, PhD thesis, University of Erlangen-Nürnberg (2015)Google Scholar
  86. 86.
    G. Maero et al., Numerical investigations on resistive cooling of trapped highly charged ions, Appl. Phys. B 107, 1087 (2012)ADSCrossRefGoogle Scholar
  87. 87.
    G. Maero, Cooling of highly charged ions in a Penning trap for HITRAP, PhD thesis, University of Heidelberg (2008)Google Scholar
  88. 88.
    N. Sillitoe and L. Hilico, Numerical Simulations of Ion Cloud Dynamics, in: Trapped Charged Particles, M. Knoop, N. Madsen and R.C. Thompson, eds., World Scientific (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations