Hyperbolic and Cylindrical Penning Traps

Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)

Abstract

The oldest Penning trap geometry in use is the hyperbolic shape, which provides good confinement properties by design, however was difficult to machine to high precisions at the time of its introduction, and offers limited access for particles and laser beams. Thus, cylindrical designs were brought forward, including more open structures. Here, we briefly review the hyperbolic and the most important forms of cylindrical Penning traps. Following that, we will have a look at variations on the concept and at the confinement properties.

References

  1. 1.
    B.M. Dyavappa, D. Datar, S. Ananthamurthy, Dependence of the confinement time of an electron plasma on the magnetic field in a quadrupole Penning trap. EPJ Techn. Instrum. 4, 4 (2017)CrossRefGoogle Scholar
  2. 2.
    R.D. Knight, The general form of the quadrupole ion trap potential. Int. J. Mass Spectrom. Ion Proc. 51, 127 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    J. Tan, G. Gabrielse, One electron in an orthogonalized cylindrical Penning trap. Appl. Phys. Lett. 55, 2144 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    E.C. Beaty, Calculated electrostatic properties of ion traps. Phys. Rev. A 33, 3645 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    D.W. Mitchell, Theory of trapped ion motion in the non-quadrupolar electrostatic potential of a cubic ion cyclotron resonance cell. Int. J. Mass Spectrom. Ion Proc. 142, 1 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    V.L. Campbell, Z. Guan, V.H. Vartanian, D.A. Laude, Cell geometry considerations for the Fourier transform ion cyclotron resonance mass spectrometry remeasurement experiment. Anal. Chem. 67, 420 (1995)CrossRefGoogle Scholar
  8. 8.
    P. Ghosh, Ion Traps (Oxford University Press, Oxford, 1995)Google Scholar
  9. 9.
    G. Gabrielse, F.C. Macintosh, Cylindrical Penning traps with orthogonalized anharmonicity compensation. Int. J. Mass. Spectrom. Ion Proc. 57, 1 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    G. Gabrielse, L. Haarsma, S.L. Rolston, Open-endcap Penning traps for high precision experiments. Int. J. Mass Spectrom. Ion Proc. 88, 319 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    D. von Lindenfels et al., Half-open Penning trap with efficient light collection for precision laser spectroscopy of highly charged ions. Hyp. Int. 227, 197 (2014)ADSGoogle Scholar
  12. 12.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)MATHGoogle Scholar
  13. 13.
    H. Bisht, H.-T. Eun, A. Mehrtens, M.A. Aegerter, Comparison of spray pyrolyzed FTO, ATO and ITO coatings for flat and bent glass substrates. Thin Solid Films 351, 109 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    M. Wiesel et al., Optically transparent solid electrodes for precision Penning traps. Rev. Sci. Inst. 88, 123101 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Z.Q. Li, J.J. Lin, Electrical resistivities and thermopowers of transparent Sn-doped indium oxide films. J. Appl. Phys. 96, 5918 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    B.-T. Lin, Y.-F. Chen, J.-J. Lin, C.-Y. Wu, Temperature dependence of resistance and thermopower of thin indium tin oxide films. Thin Solid Films 518, 6997 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    G. Mei-Zhen, R. Job, X. De-Sheng, W. Fahrner, Thickness dependence of resistivity and optical reflectance of ITO films. Chin. Phys. Lett. 25, 1380 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    E.A. Alwan, A. Kiourti, J.L. Volakis, Indium tin oxide film characterization at 0.120 GHz. IEEE Access 3, 648 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations