Skip to main content

Magnetic Bottles as Implemented in Penning Traps

  • Chapter
  • First Online:
  • 1038 Accesses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 100))

Abstract

This chapter takes a look at the effects and possible implementations of specific magnetic field geometries, mainly of so-called ‘magnetic bottles’ which are a key ingredient to the application of the continuous Stern-Gerlach effect in Penning traps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Granger, G.W. Ford, Electron spin motion in a magnetic mirror trap. Phys. Rev. Lett. 28, 1479 (1972)

    Article  ADS  Google Scholar 

  2. T. Tsuboi et al., Magnetic bottle electron spectrometer using permanent magnets. Rev. Sci. Inst. 59, 1357 (1988)

    Article  ADS  Google Scholar 

  3. H. Handschuh, G. Ganteföhr, W. Eberhardt, Vibrational spectroscopy of clusters using a magnetic bottle electron spectrometer. Rev. Sci. Inst. 66, 3838 (1995)

    Article  ADS  Google Scholar 

  4. C.J. Dedman et al., Optimum design and construction of a Zeeman slower for use with a magneto-optic trap. Rev. Sci. Inst. 75, 5136 (2004)

    Article  ADS  Google Scholar 

  5. M.A. Joffe, W. Ketterle, A. Martin, D.E. Pritchard, Transverse cooling and deflection of an atomic beam inside a Zeeman slower. J. Opt. Soc. Am. B 10, 2257 (1993)

    Article  ADS  Google Scholar 

  6. W. Demtröder, Laser Spectroscopy (Springer, Heidelberg, 2003)

    Book  Google Scholar 

  7. P. Hannaford, Oriented atoms in weak magnetic fields. Phys. Scr. T70, 117 (1997)

    Article  ADS  Google Scholar 

  8. S. Rydberg, S. Svanberg, Investigation of the np\(^2\)P\(_{3/2}\) level sequence in the Cs I spectrum by level crossing spectroscopy. Phys. Scr. 5, 209 (1972)

    Article  ADS  Google Scholar 

  9. J. Alnis, K. Blushs, M. Auzinsh, S. Kennedy, N. Shafer-Ray, E.R.I. Abraham, The Hanle effect and level crossing spectroscopy in Rb vapour under strong laser excitation. J. Phys. B 36, 1161 (2003)

    Article  ADS  Google Scholar 

  10. B. Budick, S. Marcus, R. Novick, Level-crossing spectroscopy with an electric field: stark shift of the 3\(^2\)P term in lithium. Phys. Rev. 140, A1041 (1965)

    Article  ADS  Google Scholar 

  11. W. Hogervorst, S. Svanberg, Stark effect investigation of D states in \(^{85}\)Rb and \(^{133}\)Cs using level crossing spectroscopy with a CW Dye Laser. Phys. Scr. 12, 67 (1975)

    Article  ADS  Google Scholar 

  12. A.C. Luntz, R.G. Brewer, Zeeman-tuned level crossing in 1\(\varSigma \) CH\(_4\). J. Chem. Phys. 53, 3380 (1970)

    Article  ADS  Google Scholar 

  13. S. Chu, Nobel lecture: the manipulation of neutral particles. Rev. Mod. Phys. 70, 685 (1998)

    Article  ADS  Google Scholar 

  14. S.X. Wang, J. Labaziewicz, Y. Ge, R. Shewmon, I.L. Chuang, Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap. Appl. Phys. Lett. 94, 094103 (2009)

    Article  ADS  Google Scholar 

  15. F. Mintert, C. Wunderlich, Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87, 257904 (2001)

    Article  ADS  Google Scholar 

  16. T.H. Boyer, The force on a magnetic dipole. Am. J. Phys. 56, 688 (1988)

    Article  ADS  Google Scholar 

  17. W. Petrich et al., Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett. 74, 3352 (1995)

    Article  ADS  Google Scholar 

  18. Y.V. Gott, M.S. Ioffe, V.G. Telkowskii, Some results on confinement in magnetic trapping. Nucl. Fusion, Suppl. 2, Pt. 3, 1045 (1962)

    Google Scholar 

  19. E.A. Hinds, I.G. Hughes, Magnetic atom optics: mirrors, guides, traps, and chips for atoms. J. Phys. D 32, R119 (1995)

    Article  Google Scholar 

  20. J. Reichel, Microchip traps and Bose-Einstein condensation. Appl. Phys. B 75, 469 (2002)

    Article  ADS  Google Scholar 

  21. R. Folman et al., Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263 (2002)

    Article  ADS  Google Scholar 

  22. J. Fortágh, C. Zimmermann, Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235 (2007)

    Article  ADS  Google Scholar 

  23. H. Dehmelt, Continuous Stern-Gerlach effect: principle and idealized apparatus. Proc. Natl. Acad. Sci. USA 83, 2291 (1986)

    Article  ADS  Google Scholar 

  24. R.S. van Dyck, P.B. Schwinberg, H.G. Dehmelt, New high-precision comparison of electron and positron g factors. Phys. Rev. Lett. 59, 26 (1987)

    Article  ADS  Google Scholar 

  25. G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom, New determination of the fine structure constant from the electron g value and QED. Phys. Rev. Lett. 97, 030802 (2006); Erratum ibidem 99, 039902 (2007)

    Google Scholar 

  26. D. Hanneke, S. Fogwell, G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008)

    Article  ADS  Google Scholar 

  27. S. Ulmer et al., Observation of spin flips with a single trapped proton. Phys. Rev. Lett. 106, 253001 (2011)

    Article  ADS  Google Scholar 

  28. C. Smorra et al., A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371 (2017)

    Article  ADS  Google Scholar 

  29. N. Hermanspahn et al., Observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. Phys. Rev. Lett. 84, 427 (2000)

    Article  ADS  Google Scholar 

  30. H. Häffner et al., High-accuracy measurement of the magnetic moment anomaly of the electron bound in Hydrogen-like Carbon. Phys. Rev. Lett. 85, 5308 (2000)

    Article  ADS  Google Scholar 

  31. H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)

    Article  ADS  Google Scholar 

  32. J. Verdú et al., Electronic \(g\) factor of Hydrogen-like Oxygen \(^{16}\)O\(^{7+}\). Phys. Rev. Lett. 92, 093002 (2004)

    Article  ADS  Google Scholar 

  33. J. Verdú et al., Determination of the \(g\)-factor of single Hydrogen-like ions by mode coupling in a Penning trap. Phys. Scr. T112, 68 (2004)

    Article  ADS  Google Scholar 

  34. S. Sturm et al., g factor of Hydrogen-like \(^{28}\)Si\(^{13+}\). Phys. Rev. Lett. 107, 023002 (2011)

    Article  ADS  Google Scholar 

  35. A. Wagner et al., g factor of Lithium-like Silicon \(^{28}\)Si\(^{11+}\). Phys. Rev. Lett. 110, 033003 (2013)

    Article  ADS  Google Scholar 

  36. M. Vogel, W. Quint, W. Nörtershäuser, Trapped ion oscillation frequencies as sensors for spectroscopy. Sensors 10, 2169 (2010)

    Article  Google Scholar 

  37. M. Vogel, W. Quint, Laser spectroscopy by a radiofrequency measurement on a single ion in a Penning trap. New J. Phys. 11, 013024 (2009)

    Article  ADS  Google Scholar 

  38. G. Gabrielse, S.L. Rolston, L. Haarsma, W. Kells, Antihydrogen production using trapped plasmas. Phys. Lett. A 129, 38 (1988)

    Article  ADS  Google Scholar 

  39. G. Gabrielse et al., Antihydrogen production within a Penning-Ioffe trap. Phys. Rev. Lett. 100, 113001 (2008)

    Article  ADS  Google Scholar 

  40. R.S. Van Dyck Jr., F.L. Moore, D.L. Farnham, P.B. Schwinberg, Variable magnetic bottle for precision geonium experiments. Rev. Sci. Inst. 57, 593 (1986)

    Article  ADS  Google Scholar 

  41. M. Vogel et al., Switchable magnetic bottles and field gradients for particle traps. Appl. Phys. B. 114, 63 (2013)

    Article  ADS  Google Scholar 

  42. R.S. Van Dyck Jr., P.B. Schwinberg, H.G. Dehmelt, Electron magnetic moment from geonium spectra: early experiments and background concepts. Phys. Rev. D 34, 722 (1986)

    Article  ADS  Google Scholar 

  43. L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  44. S. Sturm, A. Wagner, B. Schabinger, K. Blaum, Phase-sensitive cyclotron frequency measurements at ultralow energies. Phys. Rev. Lett. 107, 143003 (2011)

    Article  ADS  Google Scholar 

  45. O. Stern, W. Gerlach, Das magnetische moment des silberatoms (The magnetic moment of the silver atom) Z. Phys. 9, 349 (1922) and Z. Phys. 9, 353 (1922)

    Google Scholar 

  46. J. DiSciacca, G. Gabrielse, Direct measurement of the proton magnetic moment. Phys. Rev. Lett. 108, 153001 (2012)

    Article  ADS  Google Scholar 

  47. A. Mooser et al., Resolution of single spin flips of a single proton. Phys. Rev. Lett. 110, 140405 (2013)

    Article  ADS  Google Scholar 

  48. J. Verdú et al., Calculation of electrostatic fields using quasi-Green’s functions: application to the hybrid Penning trap. New J. Phys. 10, 103009 (2008)

    Article  ADS  Google Scholar 

  49. G. Gabrielse, F.C. Macintosh, Cylindrical Penning traps with orthogonalized anharmonicity compensation. Int. J. Mass. Spec. Ion Proc. 57, 1 (1984)

    Article  ADS  Google Scholar 

  50. G. Gabrielse, L. Haarsma, S.L. Rolston, Open-endcap Penning traps for high precision experiments. Int. J. Mass Spectr. Ion Proc. 88, 319 (1989)

    Article  ADS  Google Scholar 

  51. W. Meissner, R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften 21, 787 (1933)

    Article  ADS  Google Scholar 

  52. A. Mooser et al., Demonstration of the double Penning trap technique with a single proton. Phys. Lett. B 723, 78 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vogel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogel, M. (2018). Magnetic Bottles as Implemented in Penning Traps. In: Particle Confinement in Penning Traps. Springer Series on Atomic, Optical, and Plasma Physics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-76264-7_21

Download citation

Publish with us

Policies and ethics