Advertisement

Magnetic Bottles as Implemented in Penning Traps

  • Manuel Vogel
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)

Abstract

This chapter takes a look at the effects and possible implementations of specific magnetic field geometries, mainly of so-called ‘magnetic bottles’ which are a key ingredient to the application of the continuous Stern-Gerlach effect in Penning traps.

References

  1. 1.
    S. Granger, G.W. Ford, Electron spin motion in a magnetic mirror trap. Phys. Rev. Lett. 28, 1479 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    T. Tsuboi et al., Magnetic bottle electron spectrometer using permanent magnets. Rev. Sci. Inst. 59, 1357 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    H. Handschuh, G. Ganteföhr, W. Eberhardt, Vibrational spectroscopy of clusters using a magnetic bottle electron spectrometer. Rev. Sci. Inst. 66, 3838 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    C.J. Dedman et al., Optimum design and construction of a Zeeman slower for use with a magneto-optic trap. Rev. Sci. Inst. 75, 5136 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Joffe, W. Ketterle, A. Martin, D.E. Pritchard, Transverse cooling and deflection of an atomic beam inside a Zeeman slower. J. Opt. Soc. Am. B 10, 2257 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    W. Demtröder, Laser Spectroscopy (Springer, Heidelberg, 2003)CrossRefGoogle Scholar
  7. 7.
    P. Hannaford, Oriented atoms in weak magnetic fields. Phys. Scr. T70, 117 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    S. Rydberg, S. Svanberg, Investigation of the np\(^2\)P\(_{3/2}\) level sequence in the Cs I spectrum by level crossing spectroscopy. Phys. Scr. 5, 209 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    J. Alnis, K. Blushs, M. Auzinsh, S. Kennedy, N. Shafer-Ray, E.R.I. Abraham, The Hanle effect and level crossing spectroscopy in Rb vapour under strong laser excitation. J. Phys. B 36, 1161 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    B. Budick, S. Marcus, R. Novick, Level-crossing spectroscopy with an electric field: stark shift of the 3\(^2\)P term in lithium. Phys. Rev. 140, A1041 (1965)ADSCrossRefGoogle Scholar
  11. 11.
    W. Hogervorst, S. Svanberg, Stark effect investigation of D states in \(^{85}\)Rb and \(^{133}\)Cs using level crossing spectroscopy with a CW Dye Laser. Phys. Scr. 12, 67 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    A.C. Luntz, R.G. Brewer, Zeeman-tuned level crossing in 1\(\varSigma \) CH\(_4\). J. Chem. Phys. 53, 3380 (1970)ADSCrossRefGoogle Scholar
  13. 13.
    S. Chu, Nobel lecture: the manipulation of neutral particles. Rev. Mod. Phys. 70, 685 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    S.X. Wang, J. Labaziewicz, Y. Ge, R. Shewmon, I.L. Chuang, Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap. Appl. Phys. Lett. 94, 094103 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    F. Mintert, C. Wunderlich, Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87, 257904 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    T.H. Boyer, The force on a magnetic dipole. Am. J. Phys. 56, 688 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    W. Petrich et al., Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett. 74, 3352 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Y.V. Gott, M.S. Ioffe, V.G. Telkowskii, Some results on confinement in magnetic trapping. Nucl. Fusion, Suppl. 2, Pt. 3, 1045 (1962)Google Scholar
  19. 19.
    E.A. Hinds, I.G. Hughes, Magnetic atom optics: mirrors, guides, traps, and chips for atoms. J. Phys. D 32, R119 (1995)CrossRefGoogle Scholar
  20. 20.
    J. Reichel, Microchip traps and Bose-Einstein condensation. Appl. Phys. B 75, 469 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    R. Folman et al., Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    J. Fortágh, C. Zimmermann, Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    H. Dehmelt, Continuous Stern-Gerlach effect: principle and idealized apparatus. Proc. Natl. Acad. Sci. USA 83, 2291 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    R.S. van Dyck, P.B. Schwinberg, H.G. Dehmelt, New high-precision comparison of electron and positron g factors. Phys. Rev. Lett. 59, 26 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom, New determination of the fine structure constant from the electron g value and QED. Phys. Rev. Lett. 97, 030802 (2006); Erratum ibidem 99, 039902 (2007)Google Scholar
  26. 26.
    D. Hanneke, S. Fogwell, G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    S. Ulmer et al., Observation of spin flips with a single trapped proton. Phys. Rev. Lett. 106, 253001 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    C. Smorra et al., A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    N. Hermanspahn et al., Observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. Phys. Rev. Lett. 84, 427 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    H. Häffner et al., High-accuracy measurement of the magnetic moment anomaly of the electron bound in Hydrogen-like Carbon. Phys. Rev. Lett. 85, 5308 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    J. Verdú et al., Electronic \(g\) factor of Hydrogen-like Oxygen \(^{16}\)O\(^{7+}\). Phys. Rev. Lett. 92, 093002 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    J. Verdú et al., Determination of the \(g\)-factor of single Hydrogen-like ions by mode coupling in a Penning trap. Phys. Scr. T112, 68 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    S. Sturm et al., g factor of Hydrogen-like \(^{28}\)Si\(^{13+}\). Phys. Rev. Lett. 107, 023002 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    A. Wagner et al., g factor of Lithium-like Silicon \(^{28}\)Si\(^{11+}\). Phys. Rev. Lett. 110, 033003 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    M. Vogel, W. Quint, W. Nörtershäuser, Trapped ion oscillation frequencies as sensors for spectroscopy. Sensors 10, 2169 (2010)CrossRefGoogle Scholar
  37. 37.
    M. Vogel, W. Quint, Laser spectroscopy by a radiofrequency measurement on a single ion in a Penning trap. New J. Phys. 11, 013024 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    G. Gabrielse, S.L. Rolston, L. Haarsma, W. Kells, Antihydrogen production using trapped plasmas. Phys. Lett. A 129, 38 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    G. Gabrielse et al., Antihydrogen production within a Penning-Ioffe trap. Phys. Rev. Lett. 100, 113001 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    R.S. Van Dyck Jr., F.L. Moore, D.L. Farnham, P.B. Schwinberg, Variable magnetic bottle for precision geonium experiments. Rev. Sci. Inst. 57, 593 (1986)ADSCrossRefGoogle Scholar
  41. 41.
    M. Vogel et al., Switchable magnetic bottles and field gradients for particle traps. Appl. Phys. B. 114, 63 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    R.S. Van Dyck Jr., P.B. Schwinberg, H.G. Dehmelt, Electron magnetic moment from geonium spectra: early experiments and background concepts. Phys. Rev. D 34, 722 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  44. 44.
    S. Sturm, A. Wagner, B. Schabinger, K. Blaum, Phase-sensitive cyclotron frequency measurements at ultralow energies. Phys. Rev. Lett. 107, 143003 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    O. Stern, W. Gerlach, Das magnetische moment des silberatoms (The magnetic moment of the silver atom) Z. Phys. 9, 349 (1922) and Z. Phys. 9, 353 (1922)Google Scholar
  46. 46.
    J. DiSciacca, G. Gabrielse, Direct measurement of the proton magnetic moment. Phys. Rev. Lett. 108, 153001 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    A. Mooser et al., Resolution of single spin flips of a single proton. Phys. Rev. Lett. 110, 140405 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    J. Verdú et al., Calculation of electrostatic fields using quasi-Green’s functions: application to the hybrid Penning trap. New J. Phys. 10, 103009 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    G. Gabrielse, F.C. Macintosh, Cylindrical Penning traps with orthogonalized anharmonicity compensation. Int. J. Mass. Spec. Ion Proc. 57, 1 (1984)ADSCrossRefGoogle Scholar
  50. 50.
    G. Gabrielse, L. Haarsma, S.L. Rolston, Open-endcap Penning traps for high precision experiments. Int. J. Mass Spectr. Ion Proc. 88, 319 (1989)ADSCrossRefGoogle Scholar
  51. 51.
    W. Meissner, R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften 21, 787 (1933)ADSCrossRefGoogle Scholar
  52. 52.
    A. Mooser et al., Demonstration of the double Penning trap technique with a single proton. Phys. Lett. B 723, 78 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations