Penning Trap Concept and Implementation

  • Manuel Vogel
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)


In this chapter, we have a look at the concepts involved in Penning-trap confinement, and the way in which the concepts can be implemented. It compares the confinement situation in Penning traps to those of other types of confinement such as in optical and acoustic traps, and shows the most important features of experimental implementations of Penning traps and their embedding.


  1. 1.
    P. Ghosh, Ion Traps (Oxford University Press, Oxford, 1995)Google Scholar
  2. 2.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)CrossRefGoogle Scholar
  3. 3.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)Google Scholar
  4. 4.
    W.T. Scott, Who was Earnshaw? Am. J. Phys. 27, 418 (1959)ADSCrossRefGoogle Scholar
  5. 5.
    S. Earnshaw, On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans. Camb. Phil. Soc. 7, 97 (1842)ADSGoogle Scholar
  6. 6.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)zbMATHGoogle Scholar
  7. 7.
    R.I. Thompson, T.J. Harmon, M.G. Ball, The rotating-saddle trap: a mechanical analogy to RF-electric-quadrupole ion trapping? Can. J. Phys. 80, 1433 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    V. Gomer et al., Magnetostatic traps for charged and neutral particles. Hyp. Int. 109, 281 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    J.N. Tan, S.M. Brewer, N.D. Guise, Penning traps with unitary architecture for storage of highly charged ions. Rev. Sci. Inst. 83, 023103 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    S.M. Brewer, N.D. Guise, J.N. Tan, Capture and isolation of highly-charged ions in a unitary Penning trap. Phys. Rev. A 88, 063403 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    L. Suess, C.D. Finch, R. Parthasarathy, S.B. Hill, F.B. Dunning, Permanent magnet Penning trap for heavy ion storage. Rev. Sci. Inst. 73, 2861 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    C. Tseng, G. Gabrielse, Portable trap carries particles 5000 kilometers. Hyp. Int. 76, 381 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    D. Zajfman et al., High resolution mass spectrometry using a linear electrostatic ion beam trap. Int. J. Mass Spectrom. 229, 55 (2003)CrossRefGoogle Scholar
  14. 14.
    O. Kelly et al., Femtosecond lasers for mass spectrometry: proposed application to catalytic hydrogenation of butadiene. The Analyst 137, 64 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J. Perez-Riosa, How does a magnetic trap work? Am. J. Phys. 81, 836 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    D.E. Pritchard, M.P. Bradley, Atom traps compared with ion traps. Phys. Scr. T59, 131 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    L.V. King, On the acoustic radiation pressure on spheres. Proc. Roy. Soc. 147, 212 (1934)ADSCrossRefGoogle Scholar
  19. 19.
    E.G. Lierke, Akustische Positionierung. Acoust. Acta Acoust. 82, 220 (1996)Google Scholar
  20. 20.
    M.R. Pinnel, J.E. Bennett, Mass diffusion in polycrystalline copper/electroplated gold planar couples. Metall. Trans. 3, 1989 (1972)CrossRefGoogle Scholar
  21. 21.
    J. Labaziewicz et al., Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101, 180602 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 87, 1419 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    A. Safavi-Naini, P. Rabl, P.F. Weck, H.R. Sadeghpour, Microscopic model of electric-field-noise heating in ion traps. Phys. Rev. A 84, 023412 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    G. Gabrielse et al., Precise Matter and Antimatter Tests of the Standard Model, in Fundamental Physics in Particle Traps, Springer Tracts in Modern Physics, 256 (Springer, Heidelberg, 2014)Google Scholar
  25. 25.
    P. Bushev et al., Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing. Eur. Phys. J. D 50, 97 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    L. Gruber, J.P. Holder, D. Schneider, Formation of strongly coupled plasmas from multi-component ions in a Penning trap. Phys. Scr. 71, 60 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    W.A. Anderson, Electrical current shims for correcting magnetic fields. Rev. Sci. Inst. 32, 241 (1961)ADSCrossRefGoogle Scholar
  28. 28.
    G.B. Yntema, Superconducting winding for electromagnets. Phys. Rev. 98, 1197 (1955)Google Scholar
  29. 29.
    J.E. Kunzler, E. Buehler, F.S.L. Hsu, J.H. Wernick, Superconductivity in Nb$_3$Sn at high current density in a magnetic field of 88 kilogauss. Phys. Rev. Lett. 6, 890 (1961)CrossRefGoogle Scholar
  30. 30.
    M.D. Bird, I.R. Dixon, J. Toth, Large. High-field magnet projects at the NHMFL. IEEE Trans. Appl. Supercond. 25, 4300606 (2015)CrossRefGoogle Scholar
  31. 31.
    New mag lab record promises more to come, News Release of the National High Magnetic Field Laboratory, USA (2007)Google Scholar
  32. 32.
    M.N. Wilson, Superconducting Magnets (Clarendon Press, Oxford, 1983)Google Scholar
  33. 33.
    J.C. Gallop, SQUIDS, the Josephson Effects and Superconducting Electronics (CRC Press, Boca Raton, 1990). ISBN 0-7503-0051-5Google Scholar
  34. 34.
    G. Pasztor, C. Schmidt, Dynamic stress effects in technical superconductors and the ‘training’ problem of superconducting magnets. J. Appl. Phys. 49, 886 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations