Skip to main content

Particle Ensemble Density: Rotating Wall

  • Chapter
  • First Online:
Particle Confinement in Penning Traps

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 100))

  • 1025 Accesses

Abstract

The particle number density and shape of an ensemble of confined in a Penning trap can be controlled by the so-called ‘rotating wall technique’, which is a specific, non-resonant excitation of the ensemble’s rotation. Here, we briefly discuss the requirements, technical implementations, and the phenomenology of such a rotating wall, mainly when used for compression of the confined ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.J. Wineland, J.J. Bollinger, W.M. Itano, J.D. Prestage, Angular momentum of trapped atomic particles. J. Opt. Soc. Am. B 2, 1721 (1985)

    Article  ADS  Google Scholar 

  2. J.J. Bollinger et al., Electrostatic modes of ion-trap plasmas. Phys. Rev. A 48, 525 (1993)

    Article  ADS  Google Scholar 

  3. D.J. Heinzen et al., Rotational equilibria and low-order modes of a non-neutral ion plasma. Phys. Rev. Lett. 66, 2080 (1991)

    Article  ADS  Google Scholar 

  4. M. Asprusten, S. Worthington, R.C. Thompson, Theory and simulation of ion Coulomb crystal formation in a Penning trap. Appl. Phys. B 114, 157 (2014)

    Article  ADS  Google Scholar 

  5. F. Anderegg, Rotating wall technique and centrifugal separation, in Trapped Charged Particles, ed. by M. Knoop, N. Madsen, R.C. Thompson (World Scientific, Singapore, 2016)

    Google Scholar 

  6. S. Bharadia, M. Vogel, D.M. Segal, R.C. Thompson, Dynamics of laser-cooled Ca\(^+\) ions in a Penning trap with a rotating wall. Appl. Phys. B 107, 1105 (2012)

    Article  ADS  Google Scholar 

  7. X.P. Huang, J.J. Bollinger, T.B. Mitchell, W.M. Itano, Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields. Phys. Rev. Lett. 80, 73 (1998)

    Article  ADS  Google Scholar 

  8. L.R. Brewer et al., Static properties of a non-neutral \(^9\)Be\(^+\)-ion plasma. Phys. Rev. A 38, 859 (1988)

    Article  ADS  Google Scholar 

  9. M.M. Schauer, T.B. Mitchell, M.H. Holzscheiter, D.C. Barnes, Electron Penning trap for the generation of high density non-neutral plasmas. Rev. Sci. Instrum. 68, 3340 (1997)

    Article  ADS  Google Scholar 

  10. D.C. Barnes, M.M. Schauer, K.R. Umstadter, L. Chacon, G.H. Miley, Electron equilibrium and confinement in a modified Penning trap and its application to Penning fusion. Phys. Plasmas 7, 1693 (2000)

    Article  ADS  Google Scholar 

  11. M.M. Schauer, D.C. Barnes, K.R. Umstadter, Physics of non-thermal Penning-trap electron plasma and application to ion trapping. Phys. Plasmas 11, 9 (2004)

    Article  ADS  Google Scholar 

  12. D.C. Barnes, T.B. Mitchell, M.M. Schauer, Beyond the Brillouin limit with the Penning fusion experiment. Phys. Plasmas 4, 1745 (1997)

    Article  ADS  Google Scholar 

  13. L. Chacon, D.C. Barnes, Stability of thermal ions confined by electron clouds in Penning fusion systems. Phys. Plasmas 7, 4774 (2000)

    Article  ADS  Google Scholar 

  14. G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)

    Google Scholar 

  15. M. Vogel, W. Quint, G. Paulus, Th Stöhlker, A Penning trap for advanced studies with particles in extreme laser fields. Nucl. Instr. Meth. B 285, 65 (2012)

    Article  ADS  Google Scholar 

  16. W. Quint, D. Moskovkin, V.M. Shabaev, M. Vogel, Laser-microwave double-resonance technique for \(g\)-factor measurements in highly charged ions. Phys. Rev. A 78, 032517 (2008)

    Article  ADS  Google Scholar 

  17. D. von Lindenfels et al., Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Phys. Rev. A 87, 023412 (2013)

    Article  ADS  Google Scholar 

  18. X.P. Huang et al., Steady-state confinement of non-neutral plasmas by rotating electric fields. Phys. Rev. Lett. 78, 875 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vogel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogel, M. (2018). Particle Ensemble Density: Rotating Wall. In: Particle Confinement in Penning Traps. Springer Series on Atomic, Optical, and Plasma Physics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-76264-7_13

Download citation

Publish with us

Policies and ethics