Skip to main content

Motional Cooling in Penning Traps

  • Chapter
  • First Online:
Particle Confinement in Penning Traps

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 100))

  • 1051 Accesses

Abstract

The possibility to cool the motions of confined particles is one key motivation for the use of Penning traps, particularly in precision spectroscopy in any frequency domain. Here, we discuss the notion of a particle temperature, its measurement in different experimental situations, and review the most important cooling techniques applied in Penning traps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.M. Itano, J.C. Bergquist, J.J. Bollinger, D.J. Wineland, Cooling methods in ion traps. Phys. Scr. T59, 106 (1995)

    Article  ADS  Google Scholar 

  2. D.J. Wineland, H.G. Dehmelt, Principles of the stored ion calorimeter. J. Appl. Phys. 46, 919 (1975)

    Article  ADS  Google Scholar 

  3. M. Vogel et al., Resistive and sympathetic cooling of highly-charged-ion clouds in a Penning trap. Phys. Rev. A 90, 043412 (2014)

    Article  ADS  Google Scholar 

  4. J.F. Goodwin, G. Stutter, R.C. Thompson, D.M. Segal, Resolved-sideband laser cooling in a Penning trap. Phys. Rev. Lett. 116, 143002 (2016)

    Article  ADS  Google Scholar 

  5. W.M. Itano, D.J. Wineland, Laser cooling of ions stored in harmonic and Penning traps. Phys. Rev. A 25, 35 (1982)

    Article  ADS  Google Scholar 

  6. J. Eschner, G. Morigi, F. Schmidt-Kaler, R. Blatt, Laser cooling of trapped ions. J. Opt. Soc. Am. B 20, 1003 (2003)

    Article  ADS  Google Scholar 

  7. S. Djekic et al., Temperature measurement of a single ion in a Penning trap. Eur. Phys. J. D 31, 451 (2004)

    Article  ADS  Google Scholar 

  8. B. D’Urso, B. Odom, G. Gabrielse, Feedback cooling of a one-electron oscillator. Phys. Rev. Lett. 90, 043001 (2003)

    Article  ADS  Google Scholar 

  9. A. Mooser et al., Demonstration of the double Penning trap technique with a single proton. Phys. Lett. B 723, 78 (2013)

    Article  ADS  Google Scholar 

  10. D.A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976)

    MATH  Google Scholar 

  11. M.J. Jensen, T. Hasegawa, J.J. Bollinger, Temperature and heating rate of ion crystals in Penning traps. Phys. Rev. A 70, 033401 (2004)

    Article  ADS  Google Scholar 

  12. M.J. Jensen, T. Hasegawa, J.J. Bollinger, Temperature measurements of laser-cooled ions in a Penning trap, in: Non Neutral Plasmas V, AIP Conf. Proceedings vol. 692 (2003), p. 193

    Google Scholar 

  13. E.A. Cornell, R.M. Weisskoff, K.R. Boyce, D.E. Pritchard, Mode coupling in a Penning trap: \(\pi \) pulses and a classical avoided crossing. Phys. Rev. A 41, 312 (1990)

    Article  ADS  Google Scholar 

  14. H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)

    Article  ADS  Google Scholar 

  15. J. Verdu, Ultrapräzise Messung des elektronischen g-Faktors in wasserstoffähnlichem Sauerstoff, Ph.D. thesis, University of Mainz (2003)

    Google Scholar 

  16. W. Nagourney, G. Janik, H. Dehmelt, Linewidth of single laser-cooled Mg ion in radiofrequency trap. Proc. Natl. Acad. Sci. U S A 80, 643 (1983)

    Article  ADS  Google Scholar 

  17. W. Neuhauser, M. Hohenstatt, P.E. Toschek, H.G. Dehmelt, Optical-sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett. 41, 233 (1978)

    Article  ADS  Google Scholar 

  18. D.J. Wineland, R.E. Drullinger, F.L. Walls, Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40, 1639 (1978)

    Article  ADS  Google Scholar 

  19. F. Diedrich et al., Observation of a phase transition of stored laser-cooled ions. Phys. Rev. Lett. 59, 2931 (1987)

    Article  ADS  Google Scholar 

  20. J.C. Bergquist, W.M. Itano, D.J. Wineland, Recoilless optical absorption and Doppler sidebands of a single trapped ion. Phys. Rev. A 36, 428 (1987)

    Article  ADS  Google Scholar 

  21. F. Diedrich, J.C. Bergquist, W.M. Itano, and D.J. Wineland, Laser Cooling to the Zero-Point Energy of Motion, Phys. Rev. Lett. 62, 403 (1989)

    Google Scholar 

  22. C. Champenois, Laser cooling techniques applicable to trapped ions, in: Trapped Charged Particles, ed. by M. Knoop, N. Madsen, R.C. Thompson (World Scientific, Singapore, 2016)

    Google Scholar 

  23. W. Demtröder, Laser Spectroscopy (Springer, Heidelberg, 2003)

    Book  Google Scholar 

  24. H.J. Metcalf, P. Straten, Laser Cooling and Trapping of Neutral Atoms (Wiley Online Library, 2007)

    Google Scholar 

  25. R.C. Thompson, G.P. Barwood, P. Gill, Laser cooling of magnesium ions confined in a Penning trap. Optica Acta 33, 535 (1986)

    Article  ADS  Google Scholar 

  26. K. Dholakia et al., Investigation of ion dynamics in a Penning trap using a pulse-probe technique. Appl. Phys. B 60, 375 (1995)

    Article  ADS  Google Scholar 

  27. G. Birkl, S. Kassner, H. Walther, Multiple-shell structures of laser-cooled \(^{24}\)Mg\(^+\) ions in a quadrupole storage ring. Nature 357, 310 (1992)

    Article  ADS  Google Scholar 

  28. C.J. Foot, Atomic Physics, Oxford Master Series in Atomic, Optical and Laser Physics, Oxford University Press (2005, reprint 2009)

    Google Scholar 

  29. G.Zs.K. Horvath, R.C. Thompson, Laser cooling of ions stored in a Penning trap: a phase-space picture. Phys. Rev. A 59, 4530 (1999)

    Google Scholar 

  30. R.C. Thompson, J. Papadimitriou, Simple model for the laser cooling of an ion in a Penning trap. J. Phys. B. 33, 3393 (2000)

    Article  ADS  Google Scholar 

  31. W.M. Itano, L.R. Brewer, D.J. Larson, D.J. Wineland, Perpendicular laser cooling of a rotating ion plasma in a Penning trap. Phys. Rev. A 38, 5698 (1988)

    Article  ADS  Google Scholar 

  32. S. Mavadia, Motional Sideband Spectra and Coulomb Crystals in a Penning Trap, Ph.D. thesis, Imperial College London (2013)

    Google Scholar 

  33. J.F. Goodwin, Sideband Cooling to the Quantum Ground State in a Penning Trap, Ph.D. thesis, Imperial College London (2015)

    Google Scholar 

  34. S.B. Torrisi, J.W. Britton, J.G. Bohnet, J.J. Bollinger, Perpendicular laser cooling with a rotating-wall potential in a Penning trap. Phys. Rev. A 93, 043421 (2016)

    Article  ADS  Google Scholar 

  35. G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)

    Google Scholar 

  36. R.C. Thompson, Ion Coulomb crystals. Contemp. Phys. 56, 63 (2015)

    ADS  Google Scholar 

  37. W.M. Itano, J.C. Bergquist, J.J. Bollinger, D.J. Wineland, Laser Cooling of Trapped Ions (North-Holland, 1992)

    Google Scholar 

  38. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, 1972)

    Google Scholar 

  39. S. Mavadia, G. Stutter, J.F. Goodwin, D.R. Crick, R.C. Thompson, D.M. Segal, Optical sideband spectroscopy of a single ion in a Penning trap. Phys. Rev. A 89, 032502 (2014)

    Article  ADS  Google Scholar 

  40. L. Gruber, J.P. Holder, D. Schneider, Formation of strongly coupled plasmas from multi-component ions in a Penning trap. Phys. Scr. 71, 60 (2005)

    Article  ADS  Google Scholar 

  41. J.H. Wesenberg et al., Fluorescence during Doppler cooling of a single trapped atom. Phys. Rev. A 76, 053416 (2007)

    Article  ADS  Google Scholar 

  42. M. Kretzschmar, Particle motion in a Penning trap. Eur. J. Phys. 12, 240 (1991)

    Article  Google Scholar 

  43. H.W. Ellis, R.Y. Pai, E.W. McDaniel, E.A. Mason, L.A. Viehland, Transport properties of gaseous ions over a wide energy range. Part I. At. Data Nucl. Data Tables 17, 177 (1976)

    Article  ADS  Google Scholar 

  44. H.W. Ellis, E.W. McDaniel, D.L. Albritton, L.A. Viehland, S.L. Lin, E.A. Mason, Transport properties of gaseous ions over a wide energy range. Part I. At. Data Nucl. Data Tables 22, 197 (1978)

    Article  Google Scholar 

  45. H.W. Ellis, M.G. Thackston, E.W. McDaniel, E.A. Mason, Transport properties of gaseous ions over a wide energy range. Part III. At. Data Nucl. Data Tables 31, 113 (1984)

    Article  ADS  Google Scholar 

  46. T. Murböck et al., Rapid crystallization of externally produced ions in a Penning trap. Phys. Rev. A 94, 043410 (2016)

    Article  ADS  Google Scholar 

  47. G. Morigi, J. Eschner, C. Keitel, Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett. 85, 4458 (2000)

    Article  ADS  Google Scholar 

  48. C.F. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, R. Blatt, Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Phys. Rev. Lett. 85, 5547 (2000)

    Article  ADS  Google Scholar 

  49. F. Schmidt-Kaler, J. Eschner, G. Morigi, C.F. Roos, D. Leibfried, A. Mundt, R. Blatt, Laser cooling with electromagnetically induced transparency: application to trapped samples of ions or neutral atoms. Appl. Phys. B 73, 807 (2001)

    Article  ADS  Google Scholar 

  50. S.E. Harris, Electromagnetically induced transparency. Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  51. J. Dalibard, C. Cohen-Tanoudji, Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989)

    Article  ADS  Google Scholar 

  52. S.M. Yoo, J. Javanainen, Polarization gradient cooling of a Trapped ion. Phys. Rev. A 48, R30 (1993)

    Google Scholar 

  53. G. Birkl, J.A. Yeazell, R. Rückerl, H. Walther, Polarization gradient cooling of Trapped ions. Europhys. Lett. 27, 197 (1994)

    Article  ADS  Google Scholar 

  54. J. Dalibard, C. Cohen-Tannoudji, Dressed-atom approach to atomic motion in laser light: the dipole force revisited. J. Opt. Soc. Am. B 2, 1707 (1985)

    Article  ADS  Google Scholar 

  55. M. Kasevich, S. Chu, Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69, 1741 (1992)

    Article  ADS  Google Scholar 

  56. C. Monroe et al., Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  57. G. Savard et al., A new cooling technique for heavy ions in a Penning trap. Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  58. H.-U. Hasse et al., External-ion accumulation in a Penning trap with quadrupole excitation assisted buffer gas cooling. Int. J. Mass Spectrom. Ion Processes 132, 181 (1994)

    Article  ADS  Google Scholar 

  59. K.M. Ervin, Experimental techniques in gas-phase ion thermochemistry. Chem. Rev. 101, 391 (2001)

    Article  Google Scholar 

  60. S. Krückeberg et al., Multiple-collision induced dissociation of trapped silver clusters. J. Chem. Phys 110, 7216 (1999)

    Article  ADS  Google Scholar 

  61. D. Fischer et al., Fully differential cross sections for the single ionization of helium by ion impact. J. Phys. B. 36, 3555 (2003)

    Article  ADS  Google Scholar 

  62. M. Kretzschmar, Calculating damping effects for the ion motion in a Penning trap. Eur. Phys. J. D 48, 313 (2008)

    Article  ADS  Google Scholar 

  63. W. Ketterle, N.J. van Druten, Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181 (1996)

    Article  ADS  Google Scholar 

  64. T. Greytak, Prospects for Bose-Einstein condensation in magnetically trapped atomic hydrogen, in Bose-Einstein Condensation, ed. by A. Griffin, D. Snoke, S. Stringari (Cambridge University, Cambridge, UK, 1995)

    Google Scholar 

  65. M.B. Schneider, M.A. Levine, C.L. Bennett, J.R. Henderson, D.A. Knapp, R.E. Marrs, in Electron Beam Ion Sources and Their Applications, AIP Conference Proceedings, vol. 188, ed. by A. Hershcovitch (American Institute of Physics, New York, 1989)

    Google Scholar 

  66. B.M. Penetrante, D. Schneider, R.E. Marrs, J.N. Bardsley, Modeling the ion source performance of an electron beam ion trap. Rev. Sci. Instrum. 63, 2806 (1992)

    Article  ADS  Google Scholar 

  67. I. Bergström, C. Carlberg, T. Fritioff, G. Douysset, J. Schnfelder, R. Schuch, SMILETRAP Penning trap facility for precision mass measurements using highly charged ions. Nucl. Instr. Meth. A 487, 618 (2002)

    Article  ADS  Google Scholar 

  68. W. Shockley, Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635 (1938)

    Article  ADS  Google Scholar 

  69. Z. He, Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl. Inst. Meth. A 463, 250 (2001)

    Article  ADS  Google Scholar 

  70. L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  71. P. Ghosh, Ion Traps (Oxford University Press, Oxford, 1995)

    Google Scholar 

  72. X. Feng et al., Tank circuit model applied to particles in a Penning trap. J. Appl. Phys. 79, 8 (1996)

    Article  ADS  Google Scholar 

  73. D.F.A. Winters, M. Vogel, D.M. Segal, R.C. Thompson, Electronic detection of charged particle effects in a Penning trap. J. Phys. B 39, 3131 (2006)

    Article  ADS  Google Scholar 

  74. P. Horowitz, W. Hill, The Art of Electronics (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  75. S. van Gorp et al., Simbuca, using a graphics card to simulate Coulomb interactions in a Penning trap. Nucl. Instr. Meth. A 638, 192 (2011)

    Article  ADS  Google Scholar 

  76. J. Steinmann, Modellierung und Simulation der Widerstandskuehlung von hochgeladenen Ionen, Ph.D. thesis, University of Erlangen-Nürnberg (2015)

    Google Scholar 

  77. G. Gabrielse, L. Haarsma, S.L. Rolston, Open-endcap Penning traps for high precision experiments. Int. J. Mass Spectrom. Ion Processes 88, 319 (1989)

    Article  ADS  Google Scholar 

  78. G. Gabrielse, F.C. Macintosh, Cylindrical Penning traps with orthogonalized anharmonicity compensation. Int. J. Mass. Spectrom. Ion Processes 57, 1 (1984)

    Article  ADS  Google Scholar 

  79. D.J. Wineland, H.G. Dehmelt, Line shifts and widths of axial, cyclotron and G-2 resonances in tailored, stored electron (ion) cloud. Int. J. Mass Spectrom. Ion Processes 16, 338 (1975) and 19, 251 (1976)

    Google Scholar 

  80. S. Ulmer et al., The quality factor of a superconducting rf resonator in a magnetic field. Rev. Sci. Instrum. 80, 123302 (2009)

    Article  ADS  Google Scholar 

  81. J.B. Johnson, Thermal agitation of electricity in conductors. Phys. Rev. 32, 97 (1928)

    Article  ADS  Google Scholar 

  82. H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110 (1928)

    Article  ADS  Google Scholar 

  83. S. Ulmer, C. Smorra, The magnetic moments of the proton and the antiproton, in Fundamental Physics in Particle Traps, Springer Tracts in Modern Physics, vol. 256 (Springer, 2014)

    Google Scholar 

  84. G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)

    Book  Google Scholar 

  85. J. Steinmann, J. Groß, F. Herfurth, G. Zwicknagel, MD simulations of resistive cooling in HITRAP using GPUs, in AIP Conference Proceedings, vol. 1521 (2013), p. 240

    Google Scholar 

  86. G. Maero et al., Numerical investigations on resistive cooling of trapped highly charged ions. Appl. Phys. B 107, 1087 (2012)

    Article  ADS  Google Scholar 

  87. G. Maero, Cooling of highly charged ions in a Penning trap for HITRAP, Ph.D. thesis, University of Heidelberg (2008)

    Google Scholar 

  88. B. d’Urso, Cooling and Self-Excitation of a One-Electron Oscillator, Ph.D. thesis, Harvard (2003)

    Google Scholar 

  89. N. Beverini et al., Experimental verification of stochastic cooling in Penning trap. Phys. Scr. T22, 238 (1988)

    Article  ADS  Google Scholar 

  90. R.E. Drullinger, D.J. Wineland, J.C. Bergquist, High-resolution optical spectra of laser cooled ions. Appl. Phys. 22, 365 (1980)

    Article  ADS  Google Scholar 

  91. M.A. van Eijkelenborg, M.E.M. Storkey, D.M. Segal, R.C. Thompson, Sympathetic cooling and detection of molecular ions in a Penning trap. Phys. Rev. A 60, 3903 (1999)

    Article  ADS  Google Scholar 

  92. NRL Plasma Formulary, J.D. Huba, Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (2013)

    Google Scholar 

  93. L. Gruber et al., Evidence for highly charged ion coulomb crystallization in multicomponent strongly coupled plasmas. Phys. Rev. Lett. 86, 636 (2001)

    Article  ADS  Google Scholar 

  94. M. Vogel, W. Quint, Trap-assisted precision spectroscopy of forbidden transitions in highly charged ions. Phys. Rep. 490, 1 (2010)

    Article  ADS  Google Scholar 

  95. G. Gabrielse et al., Cooling and slowing of trapped antiprotons below 100 meV. Phys. Rev. Lett. 63, 1360 (1989)

    Article  ADS  Google Scholar 

  96. G. Gabrielse et al., Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198 (1999)

    Article  ADS  Google Scholar 

  97. H. Higaki et al., Electron cooling of high-energy protons in a multiring trap with a tank circuit monitoring the electron-plasma oscillations. Phys. Rev. E 65, 046410 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  98. N. Oshima et al., Development of a cold HCI source for ultra-slow collisions. Nucl. Instr. Meth. B 205, 178 (2003)

    Article  ADS  Google Scholar 

  99. A. Mohri et al., in Proceedings of Non Neutral Physics IV, AIP, New York, ed. by F. Anderegg et al. (2002), pp. 634640

    Google Scholar 

  100. J. Bernard et al., Electron and positron cooling of highly charged ions in a cooler Penning trap. Nucl. Instr. Meth. A 532, 224 (2004)

    Article  ADS  Google Scholar 

  101. B.E. Schultz et al., Cooling of highly-charged, short-lived ions for precision mass spectrometry at TRIUMF’s Ion Trap for Atomic and Nuclear Science. Phys. Scr. T156, 014097 (2013)

    Article  ADS  Google Scholar 

  102. M. Bohmann et al., Sympathetic cooling of protons and antiprotons with a common endcap Penning trap. J. Mod. Opt. (2017), https://doi.org/10.1080/09500340.2017.1404656

  103. D.J. Heinzen, D.J. Wineland, Quantum-limited cooling and detection of radiofrequency oscillations by laser-cooled ions. Phys. Rev. A 42, 2977 (1990)

    Article  ADS  Google Scholar 

  104. W. Schottky, Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern. Ann. Phys. 57, 541 (1918)

    Article  Google Scholar 

  105. YaM Blanter, M. Büttiker, Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000)

    Article  ADS  Google Scholar 

  106. R.F. Voss, J. Clarke, Flicker (1/f) noise: equilibrium temperature and resistance fluctuations. Phys. Rev. B. 13, 556 (1976)

    Article  ADS  Google Scholar 

  107. H.G.E. Beck, W.P. Spruit, 1/f noise in the variance of Johnson noise. J. Appl. Phys. 49, 3384 (1978)

    Article  ADS  Google Scholar 

  108. J. Labaziewicz et al., Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101, 180602 (2008)

    Article  ADS  Google Scholar 

  109. M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 87, 1419 (2015)

    Article  ADS  Google Scholar 

  110. A. Safavi-Naini, P. Rabl, P.F. Weck, H.R. Sadeghpour, Microscopic model of electric-field-noise heating in ion traps. Phys. Rev. A 84, 023412 (2011)

    Article  ADS  Google Scholar 

  111. G.Z. Li, R. Poggiani, G. Testera, G. Werth, Adiabatic cooling of ions in the penning trap. Z. Phys. D 22, 375 (1991)

    Article  ADS  Google Scholar 

  112. G. Gabrielse et al., Adiabatic cooling of antiprotons. Phys. Rev. Lett. 106, 073002 (2011)

    Article  ADS  Google Scholar 

  113. S.L. Rolston, G. Gabrielse, Cooling antiprotons in an ion trap. Hyperfine Interact. 44, 233 (1988)

    Article  ADS  Google Scholar 

  114. F.G. Major, The Quantum Beat: the Physical Principles of Atomic Clocks (Springer, Berlin, 1998)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vogel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogel, M. (2018). Motional Cooling in Penning Traps. In: Particle Confinement in Penning Traps. Springer Series on Atomic, Optical, and Plasma Physics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-76264-7_12

Download citation

Publish with us

Policies and ethics