Excitation of Particle Motions

  • Manuel Vogel
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)


Oscillatory motions of confined particles can be resonantly excited by a suited electromagnetic excitation at the frequency of the respective motion. This refers to individual axial and radial oscillation frequencies of single particles or particle ensembles, excitation of sidebands for motional coupling, and also to collective frequencies of ensembles such as plasma modes. Non-resonant excitation can be used to force particular motions upon particles, such as in rotating wall applications.


  1. 1.
    L. Schweikhard, A.G. Marshall, Excitation modes for Fourier transform-ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 4, 433 (1993)CrossRefGoogle Scholar
  2. 2.
    X.P. Huang et al., Precise control of the global rotation of strongly coupled ion plasmas in a Penning trap. Phys. Plasmas 5, 1656 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    S. Eliseev et al., Octupolar-excitation Penning-trap mass spectrometry for Q-value measurement of double-electron capture in \(^{164}\)Er. Phys. Rev. Lett. 107, 152501 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    M. Rosenbusch et al., A study of octupolar excitation for mass-selective centering in Penning traps. Int. J. Mass. Spectrom. 314, 6 (2012)CrossRefGoogle Scholar
  5. 5.
    R. Ringle, G. Bollen, P. Schury, S. Schwarz, T. Sun, Octupolar excitation of ion motion in a Penning trap–a study performed at LEBIT. Int. J. Mass Spectrom. 262, 33 (2007)CrossRefGoogle Scholar
  6. 6.
    X.P. Huang, J.J. Bollinger, T.B. Mitchell, W.M. Itano, Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields. Phys. Rev. Lett. 80, 73 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    K. Blaum et al., Recent developments at ISOLTRAP: towards a relative mass accuracy of exotic nuclei below 10\(^{-8}\). J. Phys. B 36, 921 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    T. Hasegawa, M.J. Jensen, J.J. Bollinger, Stability of a Penning trap with a quadrupole rotating electric field. Phys. Rev. A 71, 023406 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    A.G. Marshall, C.L. Hendrickson, G.S. Jackson, Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    S. Guan, A.G. Marshall, Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectometry: theory and applications. Int. J. Mass Spectrom. Ion Proc. 157–158, 5 (1996)CrossRefGoogle Scholar
  11. 11.
    S. Guan, R.T. McIver Jr., Optimal phase modulation in stored wave form inverse Fourier transform excitation for Fourier transform mass spectrometry. I. Basic algorithm. J. Chem. Phys. 92, 5841 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    P. Ghosh, Ion Traps (Oxford University Press, Oxford, 1995)Google Scholar
  13. 13.
    G.C. Stafford, P.E. Kelley, J.E.P. Syka, W.E. Reynolds, J.F.J. Todd, Recent improvements in and analytical applications of advanced ion trap technology. Int. J. Mass Spectrom. Ion Proc. 60, 85 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    L. Spitzer, Physics of Fully Ionized Gases (Interscience Publishers Inc, New York, 1956)zbMATHGoogle Scholar
  15. 15.
    U. Rieth et al., Ion-molecule reactions of Ru+ and Os+ with oxygen in a Penning trap. Radiochim. Acta 90, 337 (2002)CrossRefGoogle Scholar
  16. 16.
    S. Krückeberg el al., Multiple-collision induced dissociation of trapped silver clusters. J. Chem. Phys 110, 7216 (1999)Google Scholar
  17. 17.
    B. Wolf, Handbook of Ion Sources (CRC Press, Boca Raton, ISBN 978-0-8493-2502-1 ,1995)Google Scholar
  18. 18.
    H. Koivisto, M. Nurmia, Metal ion beams from an ECR ion source using volatile compounds. Nucl. Inst. Meth. B 94, 291 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    J.M. Wells, S.A. McLuckey, Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol. 402, 148 (2005)CrossRefGoogle Scholar
  20. 20.
    J.A. Luine, G.H. Dunne, Ion-molecule reaction probabilities near 10 K. Astrophys. J. 299, L67 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    R. Loch, R. Stengler, G. Werth, Th Zenker, Spin-dependence of low-energy charge exchange between H\(_2^+\) and Na*. Z. Phys. D 7, 189 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    F.L. Walls, G.H. Dunn, Storing ions for collision studies. Phys. Today 27, 30 (1974)CrossRefGoogle Scholar
  23. 23.
    F.L. Walls, G.H. Dunn, Measurement of total cross section for electron recombination with NO\(^+\) and O\(_2^+\) using ion storage techniques. J. Geophys. Res. 79, 1911 (1974)ADSCrossRefGoogle Scholar
  24. 24.
    M. Vogel, K. Hansen, A. Herlert, L. Schweikhard, Model-free determination of dissociation energies of polyatomic systems. Phys. Rev. Lett. 87, 013401 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    A. Herlert, L. Schweikhard, M. Vogel, Photoinduced dissociation of anionic and electron detachment of dianionic gold clusters by use of a laser pointer. Int. J. Mass Spectr. 213, 157 (2002)CrossRefGoogle Scholar
  26. 26.
    C. Walther, A. Herlert, J.I. Kim, F.J. Scherbaum, L. Schweikhard, M. Vogel, Absolute cross sections for the non-resonant multiphoton ionization of toluene in the gas phase. Chem. Phys. 265, 243 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    H. Weidele, M. Vogel, A. Herlert, S. Krückeberg, P. Lievens, R.E. Liverans, L. Schweikhard, C. Walther, Decay pathways of stored metal cluster anions after collisional activation. Eur. Phys. J. D 9, 173 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    J.R. Eyler, Infrared multiple photon dissociation spectroscopy of ions in Penning traps. Mass Spectrom. Rev. 28, 448 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    G. Bollen et al., The accuracy of heavy-ion mass measurements using time of flight-ion cyclotron-resonance in a Penning trap. J. Appl. Phys. 68, 4355 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    M. König et al., Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spectr. 142, 95 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    G. Gräff, H. Kalinowsky, J. Traut, A direct determination of the proton-electron mass ratio. J. Appl. Phys. 68, 4355 (1990)CrossRefGoogle Scholar
  32. 32.
    S. Eliseev et al., Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides. Phys. Rev. Lett. 110, 082501 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    G.J. Ketter, Theoretical Treatment of Miscellaneous Frequency-Shifts in Penning Traps with Classical Perturbation Theory, Ph.D. thesis (University of Heidelberg, 2015)Google Scholar
  35. 35.
    D. Wineland, P. Ekstrom, H. Dehmelt, Monoelectron oscillator. Phys. Rev. Lett. 31, 1279 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    E.G. Myers, The most precise atomic mass measurements in Penning traps. Int. J. Mass Spectrom. 349–350, 107 (2013)CrossRefGoogle Scholar
  37. 37.
    R.S. Van Dyck, S.L. Zafonte, P.B. Schwinberg, in Atomic Physics at Accelerators: Mass Spectrometry, ed. by D. Lunney, G. Audi, H.J. Kluge. Ultra-precise mass measurements using the UW-PTMS (Springer, Dordrecht, 2001)Google Scholar
  38. 38.
    C.H. Tseng, D. Enzer, G. Gabrielse, F.L. Walls, 1-bit memory using one electron: parametric oscillations in a Penning trap. Phys. Rev. A 59, 2094 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    L.J. Lapidus, D. Enzer, G. Gabrielse, Stochastic phase-switching of a parametrically-driven electron in a Penning trap. Phys. Rev. Lett. 83, 899 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    P. Bushev et al., Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing. Eur. Phys. J. D 50, 97 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    L. Schweikhard, M. Lindinger, H.-J. Kluge, Parametric mode excitation/dipole mode detection Fourier transform ion cyclotron resonance spectrometry. Rev. Sci. Inst. 61, 1055 (1990)ADSCrossRefGoogle Scholar
  42. 42.
    D.L. Rempel, E.B. Ledford, S.K. Huang, M.L. Gross, Parametric mode operation of a hyperbolic Penning trap for Fourier transform mass spectrometry. Anal. Chem. 59, 2527 (1987)CrossRefGoogle Scholar
  43. 43.
    J. Tan, G. Gabrielse, Synchronization of parametrically pumped electron oscillators with phase bistability. Phys. Rev. Lett. 67, 3090 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    J. Tan, G. Gabrielse, Parametrically pumped electron oscillators. Phys. Rev. A 48, 3105 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    N.D. Naumov, YuG Pavlenko, Parametric excitation of oscillations of charged particle bunches in a Penning trap. Tech. Phys. 42, 22 (1997)CrossRefGoogle Scholar
  46. 46.
    M. Kretzschmar, Single particle motion in a Penning trap: description in the classical canonical formalism. Physica Scripta 46, 544 (1992)ADSCrossRefGoogle Scholar
  47. 47.
    T. Mortensen, A. Deller, A. Isaac, P. van der Werf, M. Charlton, J.R. Machacek, Manipulation of the magnetron orbit of a positron cloud in a Penning trap. Phys. Plasmas 20, 012124 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    S.A. Hofstadler, K.A. Sannes-Lowery, H.R. Griffey, m/z-selective infrared multiphoton dissociation in a Penning trap using sidekick trapping and an rf-tickle pulse. Rapid Commun. Mass Spectrom. 15, 945 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    R. Ringle et al., A “Lorentz” steerer for ion injection into a Penning trap, Int. J. Mass Spectrom. 263, 38 (2007)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations