A Bit of History and Context

  • Manuel Vogel
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)


This chapter gives a brief account of the history of the Penning trap, the central characters involved in its development, and presents the main fields of operation of such traps together with a discussion of the sense in which the word ‘confinement’ needs to be understood in this context. It also clarifies some of the most important terminology and introduces the main ingredients of a quantitative description of confinement properties.


  1. 1.
    F.M. Penning, Glow discharge between coaxial cylinders at low pressures in an axial magnetic field. Physica (Utrecht) 3, 873 (1936)ADSCrossRefGoogle Scholar
  2. 2.
    F.M. Penning, Ein neues Manometer für niedrige Gasdrücke, insbesondere zwischen 10\(^{-3}\) und 10\(^{-5}\) mm. Physica 4, 71 (1937)ADSCrossRefGoogle Scholar
  3. 3.
    J.R. Pierce, Theory and Design of Electron Beams (Van Nostrand, Princeton, 1949)Google Scholar
  4. 4.
    E.N. Fortson, F.G. Major, H.G. Dehmelt, Ultrahigh resolution F=0,1 \(^3\)He\(^+\) Hfs spectra by an ion-storage collision technique. Phys. Rev. Lett. 16, 221 (1966)ADSCrossRefGoogle Scholar
  5. 5.
    F.G. Major, H.G. Dehmelt, Exchange-collision technique for the rf spectroscopy of stored ions. Phys. Rev. 170, 91 (1968)ADSCrossRefGoogle Scholar
  6. 6.
    H.G. Dehmelt, F.L. Walls, "Bolometric" technique for the rf spectroscopy of stored ions. Phys. Rev. Lett. 21, 127 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    D.A. Church, H.G. Dehmelt, Radiative cooling of an electrodynamically contained proton gas. J. Appl. Phys. 40, 3421 (1969)ADSCrossRefGoogle Scholar
  8. 8.
    H.A. Schuessler, E.N. Fortson, H.G. Dehmelt, Hyperfine structure of the ground state of \(^3\)He\(^+\) by the ion-storage exchange-collision technique. Phys. Rev. 187, 5 (1969)ADSCrossRefGoogle Scholar
  9. 9.
    H. Dehmelt, P. Ekstrom, Proposed \(g-2\) experiment on stored single electron or positron. Bull. Am. Phys. Soc. 18, 727 (1973)Google Scholar
  10. 10.
    H. Dehmelt, Continuous Stern-Gerlach effect: principle and idealized apparatus. Proc. Natl. Acad. Sci. USA 83, 2291 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    H.G. Dehmelt, Experiments with an isolated subatomic particle at rest (Nobel Lecture), July 1990,
  12. 12.
    W. Paul, Electromagnetic traps for charged and neutral particles (Nobel Lecture), July 1990,
  13. 13.
    H. Dehmelt, R.S. Van Dyck, P.B. Schwinberg, G. Gabrielse, Single elementary particles at rest in free space. Bull. Am. Phys. Soc. 24, 757 (1979)Google Scholar
  14. 14.
    K.H. Kingdon, A method for the neutralization of electron space charge by positive ionization at very low gas pressures. Phys. Rev. 21, 408 (1923)ADSCrossRefGoogle Scholar
  15. 15.
    D.J. Wineland, Spectroscopy of stored ions, in: Precision Measurentent and Fundamental Constants II, ed. by B.N. Taylor, W.D. Phillips, Natl. Bur. Stand. (U.S.), Spec. Publ. 617 (1984)Google Scholar
  16. 16.
    W. Paul, H. Steinwedel, Ein neues Massenspektrometer ohne Magnetfeld. Z. Naturforsch. A 8, 448 (1953)ADSCrossRefGoogle Scholar
  17. 17.
    M.H. Holzscheiter, A brief history in time of ion traps and their achievements in science. Phys. Scr. T59, 69 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)Google Scholar
  19. 19.
    P. Ghosh, Ion Traps (Oxford University Press, Oxford, 1995)Google Scholar
  20. 20.
    D.J. Wineland, Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    G. Gabrielse et al., Thousandfold improvement of the measured antiproton mass. Phys. Rev. Lett. 65, 1317 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    C. Smorra et al., A reservoir trap for antiprotons. Int. J. Mass Spectrom. 389, 10 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Blümel, Dynamic Kingdon trap. Phys. Rev. A 51, R30 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    Q. Hu et al., The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40, 430 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    R.H. Perry, R.G. Cooks, R.J. Noll, Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass. Spec. Rev. 27, 661 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    H.T. Schmidt, H. Cederquist, J. Jensen, A. Fardi, Conetrap: a compact electrostatic ion trap. Nucl. Instrum. Methods Phys. Res. B 173, 523 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    M. Dahan et al., A new type of electrostatic ion trap for storage of fast ion beams. Rev. Sci. Inst. 69, 76 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    M. Wang, A.G. Marshall, A “screened” electrostatic ion trap for enhanced mass resolution, mass accuracy, reproducibility, and upper mass limit in Fourier-transform ion cyclotron resonance mass spectrometry. Anal. Chem. 61, 1288 (1989)Google Scholar
  30. 30.
    A. Makarov, Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 72, 1156 (2000)CrossRefGoogle Scholar
  31. 31.
    H. Schnatz et al., Inflight capture of ions into a Penning trap. Nucl. Inst. Meth. A 251, 17 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    C.F. von Weizsäcker, The Unity of Nature (Farrar, Straus, and Giroux, New York, 1980)Google Scholar
  33. 33.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations