Skip to main content

Flame Propagation in Microchannels

  • Chapter
  • First Online:
  • 1017 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Combustion at small scales (micro- and mesoscales) is gaining increasing attention these days due to the wide spectrum of potential applications in sensors, actuators, portable electronic devices, rovers, robots, unmanned air vehicles, thrusters, industrial heating devices, and, furthermore, heat and mechanical backup power sources for air-conditioning equipment in hybrid vehicles and direct ignition (DI) engines as well [1–3]. Combustion of hydrocarbon fuels is more attractive to manufacturers of miniature power devices because the energy density of hydrocarbons is several times higher than modern batteries [4]. Microscale combustion physics is quite different from those at larger length scales. For example, flame propagation through narrow channels has unique characteristics, e.g., the increasing effects of flame–wall interaction and molecular diffusion [5–10]. In small-scale combustion systems, the surface-to-volume (S/V) ratio is large, which leads to more heat loss and thus causes flame extinction more easily.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fernandez-Pello, A.C.: Micropower generation using combustion: issues and approaches. Proc. Combust. Inst. 29, 883–899 (2002)

    Article  Google Scholar 

  2. Yetter, R., Yang, V., Aksay, I., Dryer, F.: Meso and Micro Scale Propulsion Concepts for Small Spacecraft. STAR. 44(23), 1–51 (2006)

    Google Scholar 

  3. Dunn-Rankin, D., Leal, E.M., Walther, D.C.: Personal power systems. Prog. Energy Combust. Sci. 31(5–6), 422–465 (2005)

    Article  Google Scholar 

  4. Abas, N., Kalair, A., Khan, N.: Review of fossil fuels and future energy technologies. Futures. 69, 31–49 (2015)

    Article  Google Scholar 

  5. Ju, Y., Maruta, K.: Microscale combustion: technology development and fundamental research. Prog. Energy Combust. Sci. 37(6), 669–715 (2011)

    Article  Google Scholar 

  6. Ju, Y., Xu, B.: Theoretical and experimental studies on mesoscale flame propagation and extinction. Proc. Combust. Inst. 30(2), 2445–2453 (2005)

    Article  Google Scholar 

  7. Nakamura, H., et al.: Bifurcations and negative propagation speeds of methane/air premixed flames with repetitive extinction and ignition in a heated microchannel. Combust. Flame. 159(4), 1631–1643 (2012)

    Article  Google Scholar 

  8. Maruta, K.: Micro and mesoscale combustion. Proc. Combust. Inst. 33(1), 125–150 (2011)

    Article  Google Scholar 

  9. Maruta, K., et al.: Characteristics of combustion in a narrow channel with a temperature gradient. Proc. Combust. Inst. 30(2), 2429–2436 (2005)

    Article  Google Scholar 

  10. Kim, N.I., et al.: Flammability limits of stationary flames in tubes at low pressure. Combust. Flame. 141(1–2), 78–88 (2005)

    Article  Google Scholar 

  11. Biswas, S., Qiao, L.: A numerical investigation of ignition of ultra-lean premixed H2/air mixtures by pre-chamber supersonic hot jet. SAE Int. J. Engines. 10(5), 2231–2247 (2017)

    Article  Google Scholar 

  12. Biswas, S., Qiao, L.: Ignition of ultra-lean premixed H2/air using multiple hot turbulent jets generated by pre-chamber combustion. Appl. Therm. Eng. 106(5), 925–937 (2017)

    Google Scholar 

  13. Biswas, S., et al.: On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion. Appl. Therm. Eng. 106, 925–937 (2016)

    Article  Google Scholar 

  14. Biswas, S., Qiao, L.: Prechamber hot jet ignition of ultra-lean H2/air mixtures: effect of supersonic jets and combustion instability. SAE Int. J. Engines. 9(3), 1584–1592 (2016)

    Article  Google Scholar 

  15. Alipoor, A., et al.: Asymmetric hydrogen flame in a heated micro-channel: role of Darrieus–Landau and thermal-diffusive instabilities. Int. J. Hydrog. Energy. 41(44), 20407–20417 (2016)

    Article  Google Scholar 

  16. Wang, Y., et al.: The impact of preheating on stability limits of premixed hydrogen–air combustion in a microcombustor. Heat Transfer Eng. 33(7), 661–668 (2012)

    Article  Google Scholar 

  17. Sánchez-Sanz, M., Fernández-Galisteo, D., Kurdyumov, V.N.: Effect of the equivalence ratio, Damköhler number, Lewis number and heat release on the stability of laminar premixed flames in microchannels. Combust. Flame. 161(5), 1282–1293 (2014)

    Article  Google Scholar 

  18. Yang, W., et al.: Experimental and numerical investigations of hydrogen–air premixed combustion in a converging–diverging micro tube. Int. J. Hydrog. Energy. 39(7), 3469–3476 (2014)

    Article  Google Scholar 

  19. Churchill, S.W., Chu, H.H.S.: Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int. J. Heat Mass Transf. 18, 1049–1053 (1975)

    Article  Google Scholar 

  20. GRI-Mech 1.2. http://www.me.berkeley.edu/gri_mech/

  21. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combustion Theory Model. 1(1), 41–63 (1997)

    Article  MathSciNet  Google Scholar 

  22. Mauger, C., et al.: Velocity measurements based on shadowgraph-like image correlations in a cavitating micro-channel flow. Int. J. Multiphase Flow. 58, 301–312 (2014)

    Article  Google Scholar 

  23. Fan, A., et al.: Experimental investigation of flame pattern transitions in a heated radial micro-channel. Appl. Therm. Eng. 47, 111–118 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, S. (2018). Flame Propagation in Microchannels. In: Physics of Turbulent Jet Ignition. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-76243-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76243-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76242-5

  • Online ISBN: 978-3-319-76243-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics