Skip to main content

Schlieren Image Velocimetry (SIV)

  • Chapter
  • First Online:
Physics of Turbulent Jet Ignition

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Particle image velocimetry (PIV) is a quantitative optical method used in experimental fluid dynamics that captures entire 2D/3D velocity field by measuring the displacements of numerous small particles that follow the motion of the fluid. In its simplest form, PIV acquires two consecutive images (with a very small time delay) of flow field seeded by these tracer particles, and the particle images are then cross-correlated to yield the instantaneous fluid velocity field. The nature of PIV measurement is rather indirect as it determines the particle velocity instead of the fluid velocity. It is assumed in PIV that tracer particles “faithfully” follow the flow field without changing the flow dynamics. To achieve this, the particle response time should be faster than the smallest time scale in the flow. The flow tracer fidelity in PIV is characterized using Stokes number, S k , where a smaller Stokes number (S k  < 0.1) represents excellent tracking accuracy. Conversely, schlieren and shadowgraph are truly nonintrusive techniques that rely on the fact that the change in refractive index causes light to deviate due to optical inhomogeneities present in the medium. Schlieren methods can be used for a broad range of high-speed turbulent flows containing refractive index gradients in the form of identifiable and distinguishable flow structures. In schlieren image velocimetry (SIV) techniques, the eddies in a turbulent flow field serve as PIV “particles.” Unlike PIV, there are no seeding particles in SIV. To avoid confusion, a quotation mark is used for “particles” when describing the SIV techniques. As the eddy length scale decreases with the increasing Reynolds number, the length scales of the turbulent eddies become exceptionally important. These self-seeded successive schlieren images with a small time delay between them can be correlated to find velocity field information. Thus, the analysis of schlieren and shadowgraph images is of great importance in the field of fluid mechanics since this system enables the visualization and flow field calculation of unseeded flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papamoschou, D.: A two-spark schlieren system for very-high velocity measurement. Exp. Fluids. 7(5), 354–356 (1989)

    Article  Google Scholar 

  2. Wu, Y.: Detection of velocity distribution of a flow field using sequences of Schlieren images. Opt. Eng. 40(8), 1661 (2001)

    Article  Google Scholar 

  3. Fu, S., Wu, Y.: Quantitative analysis of velocity distribution from schlieren images. In: Carlomagno, G.M., Grant, I. (eds.) Proceedings of the 8th International Symposium on Flow Visualization, Sorrento (1998)

    Google Scholar 

  4. Raffel, M.: Background-Oriented Schlieren (BOS) techniques. Exp. Fluids. 56(3), 1–17 (2015)

    Article  Google Scholar 

  5. Raffel, M., Richard, H., Meier, G.E.A.: On the applicability of background oriented optical tomography for large scale aerodynamic investigations. Exp. Fluids. 28(5), 477–481 (2000)

    Article  Google Scholar 

  6. Raffel, M., et al.: Background oriented stereoscopic schlieren for full-scale helicopter vortex characterization. In: Carlomagno, G.M., Grant, I. (eds.) Proceedings of 9th International Symposium on Flow Visualization, Edinburgh (2000)

    Google Scholar 

  7. Elsinga, G.E., et al.: Assessment and application of quantitative schlieren methods: calibrated color schlieren and background oriented schlieren. Exp. Fluids. 36(2), 309–325 (2003)

    Article  Google Scholar 

  8. Elsinga, G.E., et al.: Assessment and application of quantitative schlieren methods with bi-directional sensitivity: CCS and BOS. In: Proceedings of PSFVIP-4, Chamonix (2003)

    Google Scholar 

  9. Scarano, F., Benocci, C., Riethmuller, M.L.: Pattern recognition analysis of the turbulent flow past a backward facing step. Phys. Fluids. 11(12), 3808–3818 (1999)

    Article  Google Scholar 

  10. Kindler, K., et al.: Recent developments in background oriented Schlieren methods for rotor blade tip vortex measurements. Exp. Fluids. 43(2–3), 233–240 (2007)

    Article  Google Scholar 

  11. Goldhahn, E., Seume, J.: The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field. Exp. Fluids. 43(2), 241–249 (2007)

    Article  Google Scholar 

  12. Kegerise, M.A., Settles, G.S.: Schlieren image-correlation velocimetry and its application to free-convection flows. In: Carlomagno, G.M., Grant, I. (eds.) 9th International Symposium on Flow Visualization, pp. 1–13. Heriot-Watt University, Edinburgh (2000)

    Google Scholar 

  13. Garg, S., Settles, G.S.: Measurements of a supersonic turbulent boundary layer by focusing schlieren deflectometry. Exp. Fluids. 25(3), 254–264 (1998)

    Article  Google Scholar 

  14. Jonassen, D.R., Settles, G.S., Tronosky, M.D.: Schlieren “PIV” for turbulent flows. Opt. Lasers Eng. 44(3–4), 190–207 (2006)

    Article  Google Scholar 

  15. Hargather, M.J., Settles, G.S.: A comparison of three quantitative schlieren techniques. Opt. Lasers Eng. 50(1), 8–17 (2012)

    Article  Google Scholar 

  16. Hargather, M.J., et al.: Seedless velocimetry measurements by Schlieren Image Velocimetry. AIAA J. 49(3), 611–620 (2011)

    Article  Google Scholar 

  17. Mauger, C., et al.: Velocity measurements based on shadowgraph-like image correlations in a cavitating micro-channel flow. Int. J. Multiphase Flow. 58, 301–312 (2014)

    Article  Google Scholar 

  18. Zelenak, M., et al.: Visualisation and measurement of high-speed pulsating and continuous water jets. Measurement. 72, 1–8 (2015)

    Article  Google Scholar 

  19. Eckstein, A., Vlachos, P.P.: Digital Particle Image Velocimetry (DPIV) robust phase correlation. Meas. Sci. Technol. 20(5), 055401 (2009)

    Article  Google Scholar 

  20. Pope, S.B.: Turbulent Flows, vol. xxxiv, p. 771. Cambridge University Press, Cambridge, UK/New York (2000)

    Book  Google Scholar 

  21. Settles, G.S.: Schlieren and shadowgraph techniques. In: Experimental Fluid Mechanics. Springer-Verlag, Berlin (2001)

    Google Scholar 

  22. Fincham, A.M., Spedding, G.R.: Low cost, high resolution DPIV for measurement of turbulent fluid flow. Exp. Fluids. 23(6), 449–462 (1997)

    Article  Google Scholar 

  23. Huang, H., Dabiri, D., Gharib, M.: On errors of digital particle image velocimetry. Meas. Sci. Technol. 8(12), 1427–1440 (1997)

    Article  Google Scholar 

  24. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 207(1167), 187–217 (1980)

    Article  Google Scholar 

  25. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  26. Arfken, G., Weber, H.J.: Mathematical Methods for Physicists. Academic Press, Orlando (2005)

    MATH  Google Scholar 

  27. Coppalle, A., Joyeux, D.: An optical technique for measuring mean and fluctuating values of particle concentrations in round jets. Exp. Fluids. 16(3), 285–288 (1994)

    Article  Google Scholar 

  28. Yildirim, B.S., Agrawal, A.K.: Full-field measurements of self-excited oscillations in momentum-dominated helium jets. Exp. Fluids. 38(2), 161–173 (2005)

    Article  Google Scholar 

  29. Joshi, A., Schreiber, W.: An experimental examination of an impulsively started incompressible turbulent jet. Exp. Fluids. 40(1), 156–160 (2005)

    Article  Google Scholar 

  30. Mayrhofer, N., Woisetschläger, J.: Frequency analysis of turbulent compressible flows by laser vibrometry. Exp. Fluids. 31(2), 153–161 (2001)

    Article  Google Scholar 

  31. Westerweel, J.: Digital Particle Image Velocimetry – Theory and Application. Delft University, Delft (1993)

    Google Scholar 

  32. Rosenfeld, A., Kak, A.C.: Digital picture processing. In: Computer Science and Applied Mathematics. Morgan Kaufmann, Burlington (1982)

    Google Scholar 

  33. Pavlos, V.A.: Qi - Quantitative Imaging (PIV and more). (2015). Available from: https://sourceforge.net/projects/qi-tools/?source=navbar

  34. Watt, D.W., et al.: Theory and application of quantitative, bidirectional color schlieren for density measurement in high speed flow. Opt. Diagn. Fluids Solids Combust. 5191(1), 145–155 (2003)

    Article  Google Scholar 

  35. Fellouah, H., Ball, C.G., Pollard, A.: Reynolds number effects within the development region of a turbulent round free jet. Int. J. Heat Mass Transf. 52(17–18), 3943–3954 (2009)

    Article  Google Scholar 

  36. Weisgraber, T.H., Liepmann, D.: Turbulent structure during transition to self-similarity in a round jet. Exp. Fluids. 24(3), 210–224 (1998)

    Article  Google Scholar 

  37. Bogey, C., Bailly, C.: Large eddy simulations of transitional round jets: influence of the Reynolds number on flow development and energy dissipation. Phys. Fluids. 18(6), 065101 (2006)

    Article  Google Scholar 

  38. Keane, R.D.: Optimization of particle image velocimeters: II. Multiple pulsed systems. Meas. Sci. Technol. 2(10), 963–974 (1991)

    Article  Google Scholar 

  39. Keane, R.D.: Optimization of particle image velocimeters. I. Double pulsed systems. Meas. Sci. Technol. 1(11), 1202–1215 (1990)

    Article  Google Scholar 

  40. Hain, R., Kähler, C.J.: Fundamentals of multiframe particle image velocimetry (PIV). Exp. Fluids. 42(4), 575–587 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, S. (2018). Schlieren Image Velocimetry (SIV). In: Physics of Turbulent Jet Ignition. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-76243-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76243-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76242-5

  • Online ISBN: 978-3-319-76243-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics