• Sayan Biswas
Part of the Springer Theses book series (Springer Theses)


Greenhouse gases trap heat and make the planet warmer. According to the Environmental Protection Agency (EPA), the four major greenhouse gases (GHG) are CO2, methane, oxides of nitrogen (NOx), and fluorinated gases such as hydrofluorocarbon, perfluorocarbon, sulfur hexafluoride, nitrogen trifluoride, etc. [1]. Figure 1.1 shows US greenhouse gas emissions in the years 1990–2015. Human activities are responsible for almost all the increase in greenhouse gases in the atmosphere over the last 150 years [2, 3]. Figure 1.2 shows the greenhouse gas emissions in the USA in 2015. One of the largest contributors toward greenhouse emission is carbon dioxide. Major production of CO2 is from burning fossil fuels such as coal, natural gas, and oil. Methane is emitted during the production and transport of coal, natural gas, and oil [4].


  1. 1.
    United States: Environmental Protection Agency. Office of Policy, P., and evaluation. In: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014. U.S. Environmental Protection Agency, Washington, DC (2016)Google Scholar
  2. 2.
    Auxt, J.A., Curtis, W.M.: Global Warming : and the Creator's Plan, p. 169. Master Books, Green Forest (2009)Google Scholar
  3. 3.
    Officer, C.B., Page, J., Officer, C.B. (eds.): When the Planet Rages : Natural Disasters, Global Warming, and the Future of the Earth. Rev. and updated ed, vol. xvii, p. 227. Oxford University Press, Oxford, UK/New York (2009)Google Scholar
  4. 4.
    Intergovernmental Panel on Climate Change: Climate Change : the IPCC Response Strategies, vol. lxii, p. 272. Island Press, Washington, DC (1991)Google Scholar
  5. 5.
    United States: Environmental Protection Agency. In: Office of Policy, P., and Evaluation., Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2015. U.S. Environmental Protection Agency, Washington, DC (2017)Google Scholar
  6. 6.
    Easton, T.A.: Environmental studies. In: Classic Edition Sources, vol. xxi, 3rd edn, p. 228. McGraw-Hill Higher Education, New York (2009)Google Scholar
  7. 7.
    Parry, M., Canziani, O., Palutikof, J., Linden, P., Hanson, C.: Climate Change. In: Impacts, Adaptation and Vulnerability, pp. 10013–12473. Cambridge University Press, New York (2007)Google Scholar
  8. 8.
    GAO: Legislative Branch: Energy Audits are Key to Strategy for Reducing Greenhouse Gas Emissions. United States Government Accountability Office. GAO-07-516 (2007)Google Scholar
  9. 9.
    Woodcock, J., Phil, E., Tonne, C., Armstrong, B.G., Ashiru, O., Banister, D., Beevers, S., Chalabi, Z., Chowdhury, Z., Cohen, A., Franco, O.H., Haines, A., Hickman, R., Lindsay, G., Mittal, I., Mohan, D., Tiwari, G., Woodward, A., Roberts, I.: Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet. 374(9705), 1930–1943 (2009)CrossRefGoogle Scholar
  10. 10.
    United States, E.P.A: Office of Transportation and Air Quality, Non-conformance Penalties for Heavy-Duty Diesel Engines Subject to the 2010 NOx Emission Standard. U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Washington, DC (2012)Google Scholar
  11. 11.
    Caterpillar: Cat estimates $40 million expense for EPA non-conformance penalties (NCPs) for post-October, 2002 diesel engines. Diesel Fuel News. 7(5), 7–10 (2003)Google Scholar
  12. 12.
    Peckham, J.: U.S. EPA doubles ‘non-conformance penalties’ for navistar 2012 diesel trucks. Diesel Fuel News. 16(34), 4–5 (2012)MathSciNetGoogle Scholar
  13. 13.
    Standards., N.R.C.U.S.B.o.E.S.a.T.N.R.C.U.S.C.o.S.P.i.S.M.S.E: State and Federal Standards for Mobile Source Emissions. National Academies Press, Washington, DC (2006)Google Scholar
  14. 14.
    Dunn-Rankin, D.: Lean Combustion : Technology and Control, vol. xi, p. 261. Academic Press, Amsterdam/Boston (2008.) 8 p. of platesGoogle Scholar
  15. 15.
    Kim, K., et al.: Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions. Appl. Energy. 194, 123–135 (2017)CrossRefGoogle Scholar
  16. 16.
    Lieuwen, T.C., Yang, V.: Combustion instabilities in gas turbine engines : operational experience, fundamental mechanisms and modeling. In: Progress in Astronautics and Aeronautics, vol. xiv, p. 657. American Institute of Aeronautics and Astronautics, Reston (2005)Google Scholar
  17. 17.
    Society of Automotive Engineers: Homogeneous Charge Compression Ignition (HCCI) Combustion 2004, p. 280. Society of Automotive Engineers, Warrendale (2004)Google Scholar
  18. 18.
    Zabetakis, M.G., Instrument Society of America: Installation, Operation, and Maintenance of Combustible Gas Detection Instruments : Recommended Practice, p. 153. Instrument Society of America, Research Triangle Park (1987)Google Scholar
  19. 19.
    Zabetakis, M.G.: Flammability Characteristics of Combustible Gases and Vapors, vol. vii, p. 121. U.S. Dept. of the Interior, Bureau of Mines; for sale by the Superintendent of Documents, U.S. Govt. Print. Off, Washington (1965)Google Scholar
  20. 20.
    Gholamisheeri, M., Wichman, I.S., Toulson, E.: A study of the turbulent jet flow field in a methane fueled turbulent jet ignition (TJI) system. Combust. Flame. 183, 194–206 (2017)CrossRefGoogle Scholar
  21. 21.
    Wang, Z., et al.: Experimental study of microwave resonance plasma ignition of methane–air mixture in a constant volume cylinder. Combust. Flame. 162(6), 2561–2568 (2015)CrossRefGoogle Scholar
  22. 22.
    Guan, Y., Zhao, G., Xiao, X.: Design and experiments of plasma jet igniter for aeroengine. Propuls. Pow. Res. 2(3), 188–193 (2013)CrossRefGoogle Scholar
  23. 23.
    An, B., et al.: Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma. Acta Astronaut. 137, 444–449 (2017)CrossRefGoogle Scholar
  24. 24.
    Li, X., et al.: Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions. Acta Astronaut. 138, 79–84 (2017)CrossRefGoogle Scholar
  25. 25.
    Glassman, I., Yetter, R.A.: Combustion, vol. xx, 4th edn, p. 773. Academic Press, Amsterdam/Boston (2008)Google Scholar
  26. 26.
    Semenov, N.N.: Some Problems in Chemical Kinetics and Reactivity, 2nd edn. Princeton University Press, Princeton (1958)Google Scholar
  27. 27.
    Law, C.K.: Combustion Physics, vol. xviii, p. 722. Cambridge University Press, Cambridge, UK/New York (2006)CrossRefGoogle Scholar
  28. 28.
    Healey, S., Jaccard, M.: Abundant low-cost natural gas and deep GHG emissions reductions for the United States. Energy Policy. 98, 241–253 (2016)CrossRefGoogle Scholar
  29. 29.
    Arezki, R., Fetzer, T., Pisch, F.: On the comparative advantage of U.S. manufacturing: evidence from the shale gas revolution. J. Int. Econ. 107, 34–59 (2017)CrossRefGoogle Scholar
  30. 30.
    Gurz, M., et al.: The meeting of hydrogen and automotive: a review. Int. J. Hydrog. Energy. 42(36), 23334–23346 (2017)CrossRefGoogle Scholar
  31. 31.
    Reddi, K., et al.: Building a Hydrogen Infrastructure in the United States, pp. 293–319 (2016);
  32. 32.
    Talus, K.: United States natural gas markets, contracts and risks: what lessons for the European Union and Asia-Pacific natural gas markets? Energy Policy. 74, 28–34 (2014); CrossRefGoogle Scholar
  33. 33.
    Sperling, D., Gordon, D.: Two Billion Cars: Driving Toward Sustainability. Oxford University Press, Oxford, UK/New York (2009)Google Scholar
  34. 34.
    Andress, D., Nguyen, T.D., Das, S.: Reducing GHG emissions in the United States' transportation sector. Energy Sustain. Dev. 15(2), 117–136 (2011)CrossRefGoogle Scholar
  35. 35.
    Heywood, J.B.: Internal combustion engine fundamentals. In: McGraw-Hill Series in Mechanical Engineering, vol. xxix, p. 930. McGraw-Hill, New York (1988.) 2 p. of platesGoogle Scholar
  36. 36.
    Kim, T.Y., et al.: The effects of stratified lean combustion and exhaust gas recirculation on combustion and emission characteristics of an LPG direct injection engine. Energy. 115, 386–396 (2016)CrossRefGoogle Scholar
  37. 37.
    Murase, E., et al.: Initiation of combustion in lean mixtures by flame jets. Combust. Sci. Technol. 113(1), 167–177 (2010)CrossRefGoogle Scholar
  38. 38.
    Li, J., Yuan, L., Mongia, H.C.: Simulation of combustion characteristics in a hydrogen fuelled lean single-element direct injection combustor. Int. J. Hydrog. Energy. 42(5), 3536–3548 (2017)CrossRefGoogle Scholar
  39. 39.
    Rapp, V., Killingsworth, N., Therkelsen, P., Evans, R.: Chapter 4, Lean-Burn Internal Combustion Engines, pp. 111–146. Elsevier Inc (2016) ISBN: 978-0-12-804557-2CrossRefGoogle Scholar
  40. 40.
    Zhou, F., et al.: Effects of lean combustion coupling with intake tumble on economy and emission performance of gasoline engine. Energy. 133, 366–379 (2017)CrossRefGoogle Scholar
  41. 41.
    Wolfhard, H.G.: The ignition of combustible mixtures by hot gases. J. Jet Propuls. 28(12), 798–804 (1958)CrossRefGoogle Scholar
  42. 42.
    GussakGussak, L.A.: The role of chemical activity and turbulence intensity in Prechamber-torch organization of combustion of a stationary flow of a fuel-air mixture. In: International Congress & Exposition, Detroit (1983)Google Scholar
  43. 43.
    Gussak, L., Karpov, V., Tikhonov, Y.: The Application of Lag-Process in Prechamber Engines. SAE Technical Paper 790692 (1979)Google Scholar
  44. 44.
    Gussak, L.A., M. Turkish, D. Siegla, High Chemical Activity of Incomplete Combustion Products and a Method of Prechamber Torch Ignition for Avalanche Activation of Combustion in Internal Combustion Engines. SAE Technical Paper 750890 (1975)Google Scholar
  45. 45.
    Murase, E., et al.: Initiation of combustion in lean mixtures by flame jets. Combust. Sci. Technol. 113(1), 167–177 (1996)CrossRefGoogle Scholar
  46. 46.
    Oppenheim, A.K.: Quest for controlled combustion engines. In: International Congress and Exposition, Detroit (1988)Google Scholar
  47. 47.
    Oppenheim, A., et al.: Jet Ignition of an Ultra-Lean Mixture. SAE Technical Paper 780637 (1978)Google Scholar
  48. 48.
    Ghoniem, A.F., Oppenheim, A.K., Chen, D.Y.: Experimental and Theoretical Study of Combustion Jet Ignition. California University, Berkeley (1983)Google Scholar
  49. 49.
    Pitt, P.L., Ridley, J.D., Clemilnts, R.M.: An ignition system for ultra lean mixtures. Combust. Sci. Technol. 35(5–6), 277–285 (2007)Google Scholar
  50. 50.
    Yamaguchi, S., Ohiwa, N., Hasegawa, T.: Ignition and burning process in a divided chamber bomb. Combust. Flame. 59(2), 177–187 (1985)CrossRefGoogle Scholar
  51. 51.
    Wallesten, J., Chomiak, J.: Investigation of spark position effects in a small pre-chamber on ignition and early flame propagation. In: International Fall Fuels and Lubricants Meeting and Exposition, Baltimore (2000)Google Scholar
  52. 52.
    Elhsnawi, M., Teodorczyk, A.: Studies of mixing and ignition in hydrogen-oxygen mixture with hot inert gas injection. In: Proceedings of the European Combustion Meeting. Warsaw University of Technology ITC, Nowowiejska, Warszawa (2005)Google Scholar
  53. 53.
    Sadanandan, R., et al.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)CrossRefGoogle Scholar
  54. 54.
    Sadanandan, R., et al.: 2D mixture fraction studies in a hot-jet ignition configuration using NO-LIF and correlation analysis. Flow Turb. Combust. 86(1), 45–62 (2010)CrossRefGoogle Scholar
  55. 55.
    Gholamisheeri, M., et al.: Rapid compression machine study of a premixed, variable inlet density and flow rate, confined turbulent jet. Combust. Flame. 169, 321–332 (2016)CrossRefGoogle Scholar
  56. 56.
    Toulson, E., et al.: Visualization of propane and natural gas spark ignition and turbulent jet ignition combustion. SAE Int. J. Engines. 5(4), 1821–1835 (2012)CrossRefGoogle Scholar
  57. 57.
    Toulson, E., Watson, H., Attard, W.: Gas Assisted Jet Ignition of Ultra-Lean LPG in a Spark Ignition Engine. SAE Technical Paper 2009-01-0506 (2009)Google Scholar
  58. 58.
    Toulson, E., Watson, H., Attardm, W.: Modeling Alternative Pre-chamber Fuels in Jet Assisted Ignition of Gasoline and LPG. SAE Technical Paper 2009-01-0721 (2009)Google Scholar
  59. 59.
    Attard, W.: Turbulent jet ignition pre-chamber combustion system for spark ignition engines. MAHLE Powertrain LLC: US 20120103302 A1 (2012)Google Scholar
  60. 60.
    Attard, W.P., et al.: A New Combustion System Achieving High Drive Cycle Fuel Economy Improvements in a Modern Vehicle Powertrain. SAE Technical Paper 2011-01-0664 (2011)Google Scholar
  61. 61.
    Attard, W.P., Parsons, P.: Flame kernel development for a spark initiated pre-chamber combustion system capable of high load, high efficiency and near zero NOx emissions. SAE Int. J. Engines. 3(2), 408–427 (2010)CrossRefGoogle Scholar
  62. 62.
    Perera, I., Wijeyakulasuriya, S., Nalim, R.: Hot Combustion Torch Jet Ignition Delay Time for Ethylene-Air Mixtures. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings (2011);
  63. 63.
    Carpio, J., et al.: Critical radius for hot-jet ignition of hydrogen–air mixtures. Int. J. Hydrog. Energy. 38(7), 3105–3109 (2013)CrossRefGoogle Scholar
  64. 64.
    Karimi, A., Rajagopal, M., Nalim, R.: Traversing hot-jet ignition in a constant-volume combustor. J. Eng. Gas Turbines Power. 136(4), 041506 (2013)CrossRefGoogle Scholar
  65. 65.
    Shah, A., Tunestal, P., Johansson, B.: Effect of Pre-Chamber Volume and Nozzle Diameter on Pre-Chamber Ignition in Heavy Duty Natural Gas Engines, SAE Technical Paper 2015-01-0867, vol. 1, (2015)
  66. 66.
    Shah, A., Tunestål, P., Johansson, B.: CFD Simulations of Pre-Chamber Jets Mixing Characteristics in a Heavy Duty Natural Gas Engine. SAE Technical Paper 2015-01-1890 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sayan Biswas
    • 1
  1. 1.School of Aeronautics and AstronauticsPurdue UniversityWest LafayetteUSA

Personalised recommendations