Skip to main content

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

Conventional thermal power plants are traditionally responsible for compensation of daily and seasonal load variations. The increased penetration of renewable energy sources in the generation of electrical power recently raises technical and economic challenges for the operation of these plants due to the uncertainty of supply and demand. Existing thermal power plants have to be retrofitted with optimised components and control circuits to improve their operation mode concerning the load change times as well as the rate of shutdown and start-up. In addition to the experimental works, mathematical models contribute to a better understanding of the process and can play an important role for increasing the power plant flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adánez J, Abad A, Mendiara T, Gayán P, de Diego LF, García-Labiano F (2018) Chemical looping combustion of solid fuels. Prog Energy Combust Sci 65:6–66

    Article  Google Scholar 

  • Alobaid F (2015a) An offset-method for Euler-Lagrange approach. Chem Eng Sci 138:173–193

    Article  Google Scholar 

  • Alobaid F (2015b) A particle–grid method for Euler-Lagrange approach. Powder Technol 286:342–360

    Article  Google Scholar 

  • Alobaid F, Karner K, Belz J, Epple B, Kim H-G (2014) Numerical and experimental study of a heat recovery steam generator during start-up procedure. Energy 64:1057–1070

    Article  Google Scholar 

  • Alobaid F, Mertens N, Starkloff R, Lanz T, Heinze C, Epple B (2017) Progress in dynamic simulation of thermal power plants. Prog Energy Combust Sci 59:79–162

    Article  Google Scholar 

  • Alobaid F, Pfeiffer S, Epple B, Seon C-Y, Kim H-G (2012) Fast start-up analyses for Benson heat recovery steam generator. Energy 46:295–309

    Article  Google Scholar 

  • Åström KJ, Hägglund T (1995) PID controllers: theory, design and tuning. Instrument Society of America, United States of America

    Google Scholar 

  • Bequette BW (2003) Process control: modeling, design, and simulation. Prentice Hall Professional

    Google Scholar 

  • Berenson P (1961) Film-boiling heat transfer from a horizontal surface. J Heat Transfer 83:351–356

    Article  Google Scholar 

  • Bergman TL, Incropera FP, Lavine AS (2011) Fundamentals of heat and mass transfer. Wiley

    Google Scholar 

  • Berndt G (1984) Mathematisches Modell eines Naturumlauf-Dampferzeugers zur St@: orfallsimulation und dessen experimentelle@: Uberpr@: ufung

    Google Scholar 

  • Berry R, Peterson J, Zhang H, Martineau R, Zhao H, Zou L, Andrs D (2014) Relap-7 theory manual. Idaho National Laboratory, Tech. Rep. INL/EXT-14-31366

    Google Scholar 

  • Berry R, Zou L, Zhao H, Andrs D (2013) RELAP-7: demonstrating seven-equation, two-phase. Idaho National Laboratory (INL)

    Google Scholar 

  • Berry RA, Saurel R, LeMetayer O (2010) The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross-section. Nucl Eng Des 240:3797–3818

    Article  Google Scholar 

  • Bestion D (1990) The physical closure laws in the CATHARE code. Nucl Eng Des 124:229–245

    Article  Google Scholar 

  • Bhagwat SM, Ghajar AJ (2012) Similarities and differences in the flow patterns and void fraction in vertical upward and downward two phase flow. Exp Thermal Fluid Sci 39:213–227

    Article  Google Scholar 

  • Bhagwat SM, Ghajar AJ (2014) A flow pattern independent drift flux model based void fraction correlation for a wide range of gas–liquid two phase flow. Int J Multiph Flow 59:186–205

    Article  Google Scholar 

  • Blamey J, Anthony EJ, Wang J, Fennell PS (2010) The calcium looping cycle for large-scale CO2 capture. Prog Energy Combust Sci 36:260–279

    Article  Google Scholar 

  • Bouillon P-A, Hennes S, Mahieux C (2009) ECO2: post-combustion or oxyfuel—a comparison between coal power plants with integrated CO2 capture. Energy Procedia 1:4015–4022

    Article  Google Scholar 

  • Cooke DH (1984) On prediction of off-design multistage turbine pressures by Stodola’s ellipse. In: 1984 joint power generation conference: GT papers. American Society of Mechanical Engineers, pp V001T004A004–V001T004A004

    Google Scholar 

  • Diao Y-F, Zheng X-Y, He B-S, Chen C-H, Xu X-C (2004) Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Convers Manag 45:2283–2296

    Article  Google Scholar 

  • Epple B, Leithner R, Linzer W, Walter H (2012) Simulation von Kraftwerken und Feuerungen. Springer-Verlag

    Google Scholar 

  • Fan GQ, Rees NW (1994) Modelling of vertical spindle mills in coal fired power plants, EEC 94: electrical engineering congress 1994; Preprints; Enabling technologies, developing industry; Congress and exhibition. Institution of Engineers, Australia, p 235

    Google Scholar 

  • Geldart D (1973) Types of gas fluidization. Powder Technol 7:285–292

    Article  Google Scholar 

  • Groeneveld D, Snoek C (1986) A comprehensive examination of heat transfer correlations suitable for reactor safety analysis. Multiphase Science and Technology 2

    Google Scholar 

  • Gryczka O, Heinrich S, Deen N, van Sint Annaland M, Kuipers J, Jacob M, Mörl L (2009) Characterization and CFD-modeling of the hydrodynamics of a prismatic spouted bed apparatus. Chem Eng Sci 64:3352–3375

    Article  Google Scholar 

  • Hänninen M (2009) Phenomenological extensions to APROS six-equation model. Non-condensable gas, supercritical

    Google Scholar 

  • Hänninen M, Ahtinen E (2009) Simulation of non-condensable gas flow in two-fluid model of APROS—description of the model, validation and application. Ann Nucl Energy 36:1588–1596

    Article  Google Scholar 

  • Karimipour S, Pugsley T (2012) Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles. Powder Technol 220:63–69

    Article  Google Scholar 

  • Kuipers J, Prins W, Van Swaaij W (1991) Theoretical and experimental bubble formation at a single orifice in a two-dimensional gas-fluidized bed. Chem Eng Sci 46:2881–2894

    Article  Google Scholar 

  • Kunii D, Levenspiel O (1991) Fluidization engineering. Butterworth-Heinemann Boston

    Google Scholar 

  • Lee K, Ryley D (1968) The evaporation of water droplets in superheated steam. J Heat Transfer 90:445–451

    Article  Google Scholar 

  • Li K, Leigh W, Feron P, Yu H, Tade M (2016) Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements. Appl Energy 165:648–659

    Article  Google Scholar 

  • Luo Y, Liu H, Jia L, Cai W (2011) Modeling and simulation of ball mill coal-pulverizing system. In: Industrial electronics and applications (ICIEA), 2011 6th IEEE conference on. IEEE, pp 1348–1353

    Google Scholar 

  • Ohlemüller P, Alobaid F, Gunnarsson A, Ströhle J, Epple B (2015) Development of a process model for coal chemical looping combustion and validation against 100 kW th tests. Appl Energy 157:433–448

    Article  Google Scholar 

  • Palmer CA, Erbes MR (1994) Simulation methods used to analyze the performance of the GE PG6541B gas turbine utilizing low heating value fuels. American Society of Mechanical Engineers, New York, NY (United States)

    Google Scholar 

  • Ransom VH, Hicks DL (1984) Hyperbolic two-pressure models for two-phase flow. J Comput Phys 53:124–151

    Article  MathSciNet  MATH  Google Scholar 

  • Shah M (1979) A general correlation for heat transfer during film condensation inside pipes. Int J Heat Mass Transf 22:547–556

    Article  Google Scholar 

  • Song S, Xie L, Cai W-J (2002) Auto-tuning of cascade control systems. In: Proceedings of the 4th World Congress on intelligent control and automation, 2002. IEEE, pp 3339–3343

    Google Scholar 

  • Stroh A, Alobaid F, Hasenzahl MT, Hilz J, Ströhle J, Epple B (2016) Comparison of three different CFD methods for dense fluidized beds and validation by a cold flow experiment. Particuology

    Google Scholar 

  • Ströhle J, Junk M, Kremer J, Galloy A, Epple B (2014) Carbonate looping experiments in a 1 MW th pilot plant and model validation. Fuel 127:13–22

    Article  Google Scholar 

  • Ströhle J, Orth M, Epple B (2015) Chemical looping combustion of hard coal in a 1 MW th pilot plant using ilmenite as oxygen carrier. Appl Energy 157:288–294

    Article  Google Scholar 

  • Stuhmiller J (1977) The influence of interfacial pressure forces on the character of two-phase flow model equations. Int J Multiph Flow 3:551–560

    Article  MATH  Google Scholar 

  • Tan KK, Wang Q-G, Hang CC (2012) Advances in PID control. Springer Science & Business Media

    Google Scholar 

  • Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York

    Google Scholar 

  • Walter H (2001) Modellbildung und numerische Simulation von Naturumlaufdampferzeugern. VDI-Verlag

    Google Scholar 

  • Walter H, Epple B (2016) Numerical simulation of power plants and firing systems. Springer

    Google Scholar 

  • Walter H, Hofmann R (2011) How can the heat transfer correlations for finned-tubes influence the numerical simulation of the dynamic behavior of a heat recovery steam generator? Appl Therm Eng 31:405–417

    Article  Google Scholar 

  • Wang J, Leithner R (1995) Konzepte und Wirkungsgrade kohlegefeuerter Kombianlagen. Brennstoff-Wärme-Kraft 47:11–17

    Google Scholar 

  • Wu C, Berrouk A, Nandakumar K (2009) Three-dimensional discrete particle model for gas–solid fluidized beds on unstructured mesh. Chem Eng J 152:514–529

    Article  Google Scholar 

  • Zhou G, Si J, Taft CW (2000) Modeling and simulation of CE deep bowl pulverizer. IEEE Trans Energy Convers 15:312–322

    Google Scholar 

  • Zuber N, Findlay J (1965) Average volumetric concentration in two-phase flow systems. J Heat Transfer 87:453–468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falah Alobaid .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alobaid, F. (2018). Process Simulation. In: Numerical Simulation for Next Generation Thermal Power Plants. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-76234-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76234-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76233-3

  • Online ISBN: 978-3-319-76234-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics