Skip to main content

Numerical Modelling of Composite Delamination and Non-destructive Testing

  • Chapter
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 90))

Abstract

Delamination caused by low-velocity strike is considered as one of the most dangerous failure types. The destruction of contact between the plies or composite components significantly lowers the residual strength of the material but cannot be determined by visual inspection. These failures can mostly be determined by ultrasound testing, however, it requires a long time and cannot be carried out on site, which increases the maintenance cost. Both delamination emergence and ultrasound diagnostic results are determined by wave processes in viscoelastic media. The grid-characteristic method used in this chapter shows good results verified on various experimental data. The results of numerical modelling of delamination and its diagnostics are given in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Richardson MOW, Wisheart MJ (1996) Review of low-velocity impact properties of composite materials. Compos A-Appl Sci Manuf 27(12):1123–1131

    Article  Google Scholar 

  2. Sjoblom PO, Hartness JT, Cordell TM (1988) On low-velocity impact testing of composite materials. J Compos Muter 22:30–52

    Article  Google Scholar 

  3. Cantwell WJ, Morton J (1991) The impact resistance of composite materials. Compos 22(5):347–362

    Article  Google Scholar 

  4. Liu D, Malvem LE (1987) Matrix cracking in impacted glass/epoxy plates. J Compos Mater 21:594–609

    Article  Google Scholar 

  5. Raillon R, Toullelan G, Darmon M, Lonné S (2013) Experimental study for the validation of CIVA predictions in TOFD inspections. In: 10th international conference on NDE in relation to structural integrity for nuclear and pressurized components, 660–667

    Google Scholar 

  6. De Almeida PD, Rebello JMA, Pereira GR, Soares SD, Fernandez R (2013) Ultrasonic inspection of adhesive joints of composite pipelines. In: AIP conference proceedings, vol 1581, QNDE, Baltimore, USA, p 1069, 2014. http://dx.doi.org/10.1063/1.4864939

  7. Magomedov KM, Kholodov AS (1988) Grid-characteristic numerical methods. Nauka (in Russian), Moscow

    MATH  Google Scholar 

  8. Chelnokov FB (2006) Explicit representation of grid-characteristic schemes for the elasticity equations in two-dimensional and three-dimensional spaces. Math Model 18(6):96–108 (in Russian)

    MathSciNet  MATH  Google Scholar 

  9. Beklemysheva KA, Danilov AA, Petrov IB, Vassilevsky YV, Vasyukov AV (2015) Virtual blunt injury of human thorax: age-dependent response of vascular system. Russ J Numer Anal Math Model 30(5):259–268

    Article  MathSciNet  MATH  Google Scholar 

  10. Petrov IB, Vasyukov AV, Beklemysheva KA, Ermakov AS, Dziuba AS, Golovan VI (2014) Numerical modeling of low energy strike at composite stringer panel. Matem Mod 26(9):96–110

    MATH  Google Scholar 

  11. Beklemysheva KA, Ermakov AS, Petrov IB, Vasyukov AV (2016) Numerical simulation of the failure of composite materials by using the grid-characteristic method. Math Models Comput Simul 8(5):557–567

    Article  MathSciNet  Google Scholar 

  12. Hu N, Zemba Y, Okabe T, Yan C, Fukunaga H, Elmarakbi A (2008) A new cohesive model for simulating delamination propagation in composite laminates under transverse loads. Mech Mater 40(11):920–935

    Article  Google Scholar 

  13. Hu N, Zemba Y, Fukunaga H, Elmarakbi A, Wangh HH (2007) Stable numerical simulations of propagations of complex damages in composite structures under transverse loads. Compos Sci Technol 67:752–765

    Article  Google Scholar 

  14. Hou JP, Petrinic N, Ruiz C (2001) A delamination criterion for laminated composites under low-velocity impact. Compos Sci Technol 61(14):2069–2074

    Article  Google Scholar 

  15. Geubelle PH, Baylor JS (1998) Impact-induced delamination of composites: a 2D simulation. Compos B: Eng 29(5):589–602

    Article  Google Scholar 

  16. Reddy ED Jr, Mello FJ, Guess TR (1996) Modeling the initiation and growth of delaminations in composite structures. J Compos Mater 31(8):812–831

    Article  Google Scholar 

  17. Mi Y, Crisfield MA, Davis GAO (1998) Progressive delamination using interface element. J Compos Mater 32(14):1246–1272

    Article  Google Scholar 

  18. Petrov IB, Favorskaya AV, Beklemysheva KA (2014) Numerical simulation of processes in solid deformable media in the presence of dynamic contacts using the grid-characteristic method. Math Models Comput Simul 6(3):294–304

    Article  MATH  Google Scholar 

  19. Petrov IB, Kvasov IE (2012) High-performance computer simulation of wave processes in geological media in seismic exploration. Comput Math Math Phys 52(2):302–313

    Article  MATH  Google Scholar 

  20. Favorskaya AV, Petrov IB (2016) Wave responses from oil reservoirs in the Arctic shelf zone. Dokl Earth Sci 466(2):214–217

    Article  Google Scholar 

  21. Favorskaya A, Petrov I, Grinevskiy A (2017) Numerical simulation of fracturing in geological medium. Procedia Comput Sci 112:1216–1224

    Article  Google Scholar 

  22. Favorskaya A, Petrov I, Khokhlov N (2016) Numerical modeling of wave processes during shelf seismic exploration. Procedia Comput Sci 96:920–929

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by the Russian Fund for Basic Researches according to the research project № 16-07-00884 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina A. Beklemysheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beklemysheva, K.A., Vasyukov, A.V., Kazakov, A.O., Ermakov, A.S. (2018). Numerical Modelling of Composite Delamination and Non-destructive Testing. In: Favorskaya, A., Petrov, I. (eds) Innovations in Wave Processes Modelling and Decision Making. Smart Innovation, Systems and Technologies, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-76201-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76201-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76200-5

  • Online ISBN: 978-3-319-76201-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics