Abarca RL, Rodríguez FJ, Guarda A, Galotto MJ, Bruna JE (2016) Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem 196:968–975. https://doi.org/10.1016/j.foodchem.2015.10.023
CrossRef
CAS
Google Scholar
Alvarez-Parrilla E, de la Rosa LA, Torres-Rivas F, Rodrigo-Garcia J, González-Aguilar GA (2005) Complexation of apple antioxidants: chlorogenic acid, quercetin and rutin by β-cyclodextrin (β-CD). J Incl Phenom Macrocycl Chem 53:121–129. https://doi.org/10.1007/s10847-005-1620-z
CrossRef
CAS
Google Scholar
Ammar HO, Ghorab M, Mahmoud AA, Makram TS, Noshi SH (2012) Topical liquid crystalline gel containing lornoxicam/cyclodextrin complex. J Incl Phenom Macrocycl Chem 73:161–175. https://doi.org/10.1007/s10847-011-0039-y
CrossRef
CAS
Google Scholar
Andrade TA, Freitas TS, Araújo FO, Menezes PP, Dória GAA, Rabelo AS, Quintans-Júnior LJ, Santos MRV, Bezerra DP, Serafini MR, Menezes IRA, Nunes PS, Araújo AAS, Costa MS, Campina FF, Santos ATL, Silva ARP, Coutinho HDM (2017) Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii Benth essential oil in β -cyclodextrin. Biomed Pharmacother 89:201–207. https://doi.org/10.1016/j.biopha.2017.01.158
CrossRef
CAS
Google Scholar
Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640. https://doi.org/10.1016/j.foodhyd.2009.01.001
CrossRef
CAS
Google Scholar
Badr-Eldin SM, Elkheshen SA, Ghorab MM (2008) Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: Preparation and in-vitro evaluation. Eur J Pharm Biopharm 70:819–827. https://doi.org/10.1016/j.ejpb.2008.06.024
CrossRef
CAS
Google Scholar
Bai L, Wyrwalski F, Lamonier J-F, Khodakov AY, Monflier E, Ponchel A (2013) Effects of β-cyclodextrin introduction to zirconia supported-cobalt oxide catalysts: from molecule-ion associations to complete oxidation of formaldehyde. Appl Catal B Environ 138-139:381–390. https://doi.org/10.1016/j.apcatb.2013.03.015
CrossRef
CAS
Google Scholar
Bertacche V, Lorenzi N, Nava D, Pini E, Sinico C (2006) Host–guest interaction study of resveratrol with natural and modified cyclodextrins. J Incl Phenom Macrocycl Chem 55:279–287. https://doi.org/10.1007/s10847-006-9047-8
CrossRef
CAS
Google Scholar
Bettinetti GP, Sorrenti M, Rossi S, Ferrari F, Mura P, Faucci MT (2002) Assessment of solid-state interactions of naproxen with amorphous cyclodextrin derivatives by DSC. J Pharm Biomed Anal 30:1173–1179
CrossRef
CAS
Google Scholar
Biliaderis CG (1983) Differential scanning calorimetry in food research. A review. Food Chem 10:239–265
CrossRef
CAS
Google Scholar
Bocanegra-Diaz A, Mohallem NDS, Sinisterra RD (2003) Preparation of a ferrofluid using cyclodextrin and magnetite. J Braz Chem Soc 14(6):936–941
CrossRef
CAS
Google Scholar
Boldescu V, Bratu I, Borodi G, Kacso I, Bende A, Duca G, Macaev F, Pogrebnoi S, Ribkovskaia Z (2012) Study of binary systems of β-cyclodextrin with a highly potential anti-mycobacterial drug. J Incl Phenom Macrocycl Chem 74:129–135. https://doi.org/10.1007/s10847-011-0091-7
CrossRef
CAS
Google Scholar
Bonetti P, de Moraes FF, Zanin GM, de Cássia Bergamasco R (2016) Thermal behavior study and decomposition kinetics of linalool/β-cyclodextrin inclusion complex. Polym Bull 73:279–291. https://doi.org/10.1007/s00289-015-1486-1
CrossRef
CAS
Google Scholar
Bouchemal K, Mazzaferro S (2012) How to conduct and interpret ITC experiments accurately for cyclodextrin-guest interactions. Drug Discov Today 17(11/12):623–629. https://doi.org/10.1016/j.drudis.2012.01.023
CrossRef
CAS
Google Scholar
Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–666. https://doi.org/10.1016/j.addr.2007.05.012
CrossRef
CAS
Google Scholar
Cabral Marques HM (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326. https://doi.org/10.1002/ffj.2019
CrossRef
CAS
Google Scholar
Cabral Marques HM, Hadgraft J, Kellaway IW (1990) Studies of cyclodextrin inclusion complexes. I. The salbutamol-cyclodextrin complex as studied by phase solubility and DSC. Int J Pharm 63:259–266
CrossRef
CAS
Google Scholar
Calabrò ML, Tommasini S, Donato P, Raneri D, Stancanelli R, Ficarra P, Ficarra R, Costa C, Catania S, Rustichelli C, Gamberini G (2004) Effects of α- and β-cyclodextrin complexation on the physico-chemical properties and antioxidant activity of some 3-hydroxyflavones. J Pharm Biomed Anal 35:365–377. https://doi.org/10.1016/j.jpba.2003.12.005
CrossRef
CAS
Google Scholar
Calsavara LPV, Zanin GM, de Moraes FF (2012) Enrofloxacin inclusion complexes with cyclodextrins. J Incl Phenom Macrocycl Chem 73:219–224. https://doi.org/10.1007/s10847-011-0045-0
CrossRef
CAS
Google Scholar
Carrier RL, Miller LA, Ahmed I (2007) The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 123:78–99. https://doi.org/10.1016/j.jconrel.2007.07.018
CrossRef
CAS
Google Scholar
Cavalli R, Trotta F, Trotta M, Pastero L, Aquilano D (2007) Effect of alkylcarbonates of γ-cyclodextrins with different chain lengths on drug complexation and release characteristics. Int J Pharm 339:197–204. https://doi.org/10.1016/j.ijpharm.2007.03.001
CrossRef
CAS
Google Scholar
Ceborska M, Zimnicka M, Wszelaka-Rylik M, Troć A (2016) Characterization of folic acid/native cyclodextrins host-guest complexes in solution. J Mol Struct 1109:114–118. https://doi.org/10.1016/j.molstruc.2015.12.082
CrossRef
CAS
Google Scholar
Cerchiara T, Luppi B, Bigucci F, Zecchi V (2003) Effect of chitosan on progesterone release from hydroxypropyl-β-cyclodextrin complexes. Int J Pharm 258:209–215. https://doi.org/10.1016/S0378-5173(03)00202-3
CrossRef
CAS
Google Scholar
Ciesielski W, Girek T (2011) Study of thermal stability of β-cyclodextrin/metal complexes in the aspect of their future applications. J Incl Phenom Macrocycl Chem 69:461–467. https://doi.org/10.1007/s10847-010-9803-7
CrossRef
CAS
Google Scholar
Corciova A, Ciobanu C, Poiata A, Mircea C, Nicolescu A, Drobota M, Varganici C-D, Pinteala T, Marangoci N (2015) Antibacterial and antioxidant properties of hesperidin:β -cyclodextrin complexes obtained by different techniques. J Incl Phenom Macrocycl Chem 81(1):71–84. https://doi.org/10.1007/s10847-014-0434-2
CrossRef
CAS
Google Scholar
Dias K, Nikolaou S, De Giovani WF (2008) Synthesis and spectral investigation of Al(III) catechin/β -cyclodextrin and Al(III) quercetin/β -cyclodextrin inclusion compounds. Spectrochim Acta A 70(1):154–161. https://doi.org/10.1016/j.saa.2007.07.022
CrossRef
CAS
Google Scholar
Duchêne D, Bochot A (2016) Thirty years with cyclodextrins. Int J Pharm 514:58–72. https://doi.org/10.1016/j.ijpharm.2016.07.030
CrossRef
CAS
Google Scholar
Durante M, Lenucci MS, Marrese PP, Rizzi V, De Caroli M, Piro G, Fini P, Russo GL, Mita G (2016) α-Cyclodextrin encapsulation of supercritical CO extracted oleoresins from different plant matrices: a stability study. Food Chem 199:684–693. https://doi.org/10.1016/j.foodchem.2015.12.073
CrossRef
CAS
Google Scholar
Éhen Z, Giordano F, Sztatisz J, Jicsinszky L, Novák C (2005) Thermal characterization of natural and modified cyclodextrins using TG-MS combined technique. J Therm Anal Calorim 80:419–424
CrossRef
CAS
Google Scholar
Funk O, Schwabe L, Fromming K-H (1993) Composition and properties of freeze-dried products of nicotinic acid with β -cyclodextrin and heptakis (2,6-O-dimethyl)-β -cyclodextrin. J Incl Phenom Mol Recognit Chem 16:299–314
Google Scholar
Galvão JG, Silva VF, Ferreira SG, França FRM, Santos DA, Freitas LS, Alves PB, Antunes de Souza Araújo A, Cavalcanti SCH, Nunes RS (2015) β-Cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: an alternative to control Aedes aegypti larvae. Thermochim Acta 608:14–19. https://doi.org/10.1016/j.tca.2015.04.001
CrossRef
CAS
Google Scholar
Gatiatulin AK, Ziganshin MA, Gorbatchuk VV (2014) Selective preparation of beta-cyclodextrin clathrates by solid-phase exchange of included tetrahydrofurane for volatile guests in absence of water. J Therm Anal Calorim 118:987–992. https://doi.org/10.1007/s10973-014-3800-9
CrossRef
CAS
Google Scholar
Giordano F, Novak C, Moyano R (2001) Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta 380:123–151
CrossRef
CAS
Google Scholar
Giron D (2002) Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim 68:335–357
CrossRef
CAS
Google Scholar
Gomes Rodrigues S, de Souza Chaves I, de Melo NF-S, de Jesus MB, Fraceto LF, Fernandes SA, de Paula E, Puggina de Freitas M, de Matos Alves Pinto L (2011) Computational analysis and physico-chemical characterization of an inclusion compound between praziquantel and methyl-β-cyclodextrin for use as an alternative in the treatment of schistosomiasis. J Incl Phenom Macrocycl Chem 70:19–28. https://doi.org/10.1007/s10847-010-9852-y
CrossRef
CAS
Google Scholar
Guimarães AG, Oliveira MA, dos Santos Alves R, dos Passos Menezes P, Russo Serafini M, Antunes de Souza Araújo A, Bezerra DP, Quintans Júnior LJ (2015) Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chem Biol Interact 227:69–76. https://doi.org/10.1016/j.cbi.2014.12.020
CrossRef
CAS
Google Scholar
Hădărugă NG, Hădărugă DI, Păunescu V, Tatu C, Ordodi VL, Bandur G, Lupea AX (2006) Thermal stability of the linoleic acid/α- and β-cyclodextrin complexes. Food Chem 99:500–508. https://doi.org/10.1016/j.foodchem.2005.08.012
CrossRef
CAS
Google Scholar
Hădărugă DI, Hădărugă NG, Butnaru G, Tatu C, Gruia A (2010) Bioactive microparticles (10): thermal and oxidative stability of nicotine and its complex with β-cyclodextrin. J Incl Phenom Macrocycl Chem 68:155–164. https://doi.org/10.1007/s10847-010-9761-0
CrossRef
CAS
Google Scholar
Hădărugă DI, Hădărugă NG, Bandur GN, Isengard H-D (2012a) Water content of flavonoid/cyclodextrin nanoparticles: relationship with the structural descriptors of biologically active compounds. Food Chem 132:1651–1659. https://doi.org/10.1016/j.foodchem.2011.06.004
CrossRef
CAS
Google Scholar
Hădărugă NG, Hădărugă DI, Isengard H-D (2012b) Water content of natural cyclodextrins and their essential oil complexes: a comparative study between Karl Fischer titration and thermal methods. Food Chem 132:1741–1748. https://doi.org/10.1016/j.foodchem.2011.11.003
CrossRef
CAS
Google Scholar
Hădărugă DI, Ünlüsayin M, Gruia AT, Birău (Mitroi) C, Rusu G, Hădărugă NG (2016) Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β-cyclodextrin. Beilstein J Org Chem 12:179–191. https://doi.org/10.3762/bjoc.12.20
CrossRef
CAS
Google Scholar
Hădărugă DI, Birău (Mitroi) CL, Gruia AT, Păunescu V, Bandur GN, Hădărugă NG (2017) Moisture evaluation of β-cyclodextrin/fish oils complexes by thermal analyses: a data review on common barbel (Barbus barbus L.), Pontic shad (Alosa immaculata Bennett), European wels catfish (Silurus glanis L.), and common bleak (Alburnus alburnus L.) living in Danube river. Food Chem 236:49–58. https://doi.org/10.1016/j.foodchem.2017.03.093
CrossRef
CAS
Google Scholar
Haiyun D, Jianbin C, Guomei Z, Shaomin S, Jinhao P (2003) Preparation and spectral investigation on inclusion complex of β-cyclodextrin with rutin. Spectrochim Acta A 59:3421–3429. https://doi.org/10.1016/S1386-1425(03)00176-8
CrossRef
CAS
Google Scholar
Hanawa T, Yonemochi E, Oguchi T, Nakai Y, Yamamoto K (1993) Thermal behavior of ground mixtures of heptakis (2,6-di-O-methyl)-β-cyclodextrin and benzoic acid. J Incl Phenom Mol Recognit Chem 15:91–101
CrossRef
CAS
Google Scholar
He D, Deng P, Yang L, Tan Q, Liu J, Yang M, Zhang J (2013) Molecular encapsulation of rifampicin as an inclusion complex of hydroxypropyl-β-cyclodextrin: design, characterization and in vitro dissolution. Colloids Surf B Biointerfaces 103:580–585. https://doi.org/10.1016/j.colsurfb.2012.10.062
CrossRef
CAS
Google Scholar
Hegheş A, Hădărugă NG, Fuliaş A-V, Bandur GN, Hădărugă DI, Dehelean C-A (2015) Capsicum annuum extracts/β -cyclodextrin complexes. Thermal analyses - Karl Fischer water titration correlations and antioxidant activity. J Therm Anal Calorim 120:603–615. https://doi.org/10.1007/s10973-014-4229-x
Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol 51:86–93. https://doi.org/10.1016/j.lwt.2012.11.011
CrossRef
CAS
Google Scholar
Ho BT, Joyce DC, Bhandari BR (2011) Encapsulation of ethylene gas into α-cyclodextrin and characterisation of the inclusion complexes. Food Chem 127:572–580. https://doi.org/10.1016/j.foodchem.2011.01.043
CrossRef
CAS
Google Scholar
Huang Y, Zu Y, Zhao X, Wu M, Feng Z, Deng Y, Zu C, Wang L (2016) Preparation of inclusion complex of apigenin-hydroxypropyl-β-cyclodextrin by using supercritical antisolvent process for dissolution and bioavailability enhancement. Int J Pharm 511:921–930. https://doi.org/10.1016/j.ijpharm.2016.08.007
CrossRef
CAS
Google Scholar
Ikeda H, Fukushige Y, Matsubara T, Inenaga M, Kawahara M, Yukawa M, Fujisawa M, Yukawa E, Aki H (2016) Improving water solubility of nateglinide by complexation of β-cyclodextrin. J Therm Anal Calorim 123:1847–1850. https://doi.org/10.1007/s10973-015-4714-x
CrossRef
CAS
Google Scholar
Jadhav P, Pore Y (2016) Physicochemical, thermodynamic and analytical studies on binary and ternary inclusion complexes of bosentan with hydroxypropyl-β-cyclodextrin. Bulletin of Faculty of Pharmacy, Cairo University 55:147–154. https://doi.org/10.1016/j.bfopcu.2016.12.004
CrossRef
Google Scholar
Jamrógiewicza M, Wielgomas B, Strankowskic M (2014) Evaluation of the photoprotective effect of β-cyclodextrin on the emission of volatile degradation products of ranitidine. J Pharm Biomed Anal 98:113–119. https://doi.org/10.1016/j.jpba.2014.05.014
CrossRef
CAS
Google Scholar
Jordheim LP, Degobert G, Diab R, Peyrottes S, Périgaud C, Dumontet C, Fessi H (2009) Inclusion complexes of a nucleotide analogue with hydroxypropyl-beta-cyclodextrin. J Incl Phenom Macrocycl Chem 63:11–16. https://doi.org/10.1007/s10847-008-9483-8
CrossRef
CAS
Google Scholar
Kacso I, Borodi G, Fărcas SI, Bratu I (2009) Inclusion compound of vitamin B13 in β-Cyclodextrin. Structural investigations. J Phys Conf Ser 182:1–5. https://doi.org/10.1088/1742-6596/182/1/012009
CrossRef
CAS
Google Scholar
Karathanos VT, Mourtzinos I, Yannakopoulou K, Andrikopoulos NK (2007) Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem 101:652–658. https://doi.org/10.1016/j.foodchem.2006.01.053
CrossRef
CAS
Google Scholar
Kfoury M, Auezova L, Fourmentin S, Greige-Gerges H (2014) Investigation of monoterpenes complexation with hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 80(1):51–60. https://doi.org/10.1007/s10847-014-0385-7
CrossRef
CAS
Google Scholar
Kfoury M, Auezova L, Ruellan S, Greige-Gerges H, Fourmentin S (2015) Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr Polym 118:156–164. https://doi.org/10.1016/j.carbpol.2014.10.073
CrossRef
CAS
Google Scholar
Kfoury M, Landy D, Ruellan S, Auezova L, Greige-Gerges H, Fourmentin S (2017) Nootkatone encapsulation by cyclodextrins: effect on water solubility and photostability. Food Chem 236:41–48. https://doi.org/10.1016/j.foodchem.2016.12.086
CrossRef
CAS
Google Scholar
Koontz JL, Marcy JE (2003) Formation of natamycin: cyclodextrin inclusion complexes and their characterization. J Agric Food Chem 51:7106–7110. https://doi.org/10.1021/jf030332y
CrossRef
CAS
Google Scholar
Kreaz RMA, Abu-Eida EY, Erős I, Kata M (1999) Freeze-dried complexes of furosemide with β-cyclodextrin derivatives. J Incl Phenom Macrocycl Chem 34:39–48
CrossRef
CAS
Google Scholar
Krishna Mohan PR, Sreelakshmi G, Muraleedharan CV, Joseph R (2012) Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib Spectrosc 62:77–84. https://doi.org/10.1016/j.vibspec.2012.05.002
CrossRef
CAS
Google Scholar
Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453:167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055
CrossRef
CAS
Google Scholar
Lelievre J, Liu H (1994) A review of thermal analysis studies of starch gelatinization. Thermochim Acta 246:309–315
CrossRef
CAS
Google Scholar
Li J-H, Zhang N, Li X-T, Wang J-Y, Tian S-J (1997) Kinetic studies on the thermal dissociation of the inclusion complex of β-cyclodextrin with cinnamic aldehyde. J Therm Anal 49:1527–1533
CrossRef
CAS
Google Scholar
de Lima Petito N, da Silva Dias D, Gonçalves Costa V, Quintanilha Falcão D, Gome de Lima Araujo K (2016) Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-β-cyclodextrin. Food Chem 208:124–131. https://doi.org/10.1016/j.foodchem.2016.03.122
CrossRef
CAS
Google Scholar
Lima PSS, Lucchese AM, Araújo-Filho HG, Menezes PP, Araújo AAS, Quintans-Júnior LJ, Quintans JSS (2016) Inclusion of terpenes in cyclodextrins: preparation, characterization and pharmacological approaches. Carbohydr Polym 151:965–987. https://doi.org/10.1016/j.carbpol.2016.06.040
CrossRef
CAS
Google Scholar
Lin-Hui T, Zheng-Zhi P, Ying Y (1995) Inclusion complexes of α-and β-cyclodextrin with α-lipoic acid. J Incl Phenom Mol Recognit Chem 23:119–126
CrossRef
Google Scholar
Liu B, Li W, Zhao J, Liu Y, Zhu X, Liang G (2013a) Physicochemical characterisation of the supramolecular structure of luteolin/cyclodextrin inclusion complex. Food Chem 141:900–906. https://doi.org/10.1016/j.foodchem.2013.03.097
CrossRef
CAS
Google Scholar
Liu B, Zhu X, Zeng J, Zhao J (2013b) Preparation and physicochemical characterization of the supramolecular inclusion complex of naringin dihydrochalcone and hydroxypropyl-β-cyclodextrin. Food Res Int 54:691–696. https://doi.org/10.1016/j.foodres.2013.08.007
CrossRef
CAS
Google Scholar
Liu H, Yang G, Tang Y, Cao D, Qi T, Qi Y, Fan G (2013c) Physicochemical characterization and pharmacokinetics evaluation of β-caryophyllene/β-cyclodextrin inclusion complex. Int J Pharm 450:304–310. https://doi.org/10.1016/j.ijpharm.2013.04.013
CrossRef
CAS
Google Scholar
Liu D-D, Guo Y-F, Zhang J-Q, Yang Z-K, Li X, Yang B, Yang R (2017) Inclusion of lycorine with natural cyclodextrins (α-, β-and γ-CD): experimental and in vitro evaluation. J Mol Struct 1130:669–676. https://doi.org/10.1016/j.molstruc.2016.11.018
CrossRef
CAS
Google Scholar
Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11. https://doi.org/10.1016/j.ijpharm.2006.10.044
CrossRef
CAS
Google Scholar
Loh GOK, Tan YTF, Peh K-K (2016) Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian Journal of Pharmaceutical Sciences 11:536–546. https://doi.org/10.1016/j.ajps.2016.02.009
CrossRef
Google Scholar
Maestrelli F, Cecchi M, Cirri M, Capasso G, Mennini N, Mura P (2009) Comparative study of oxaprozin complexation with natural and chemically-modified cyclodextrins in solution and in the solid state. J Incl Phenom Macrocycl Chem 63:17–25. https://doi.org/10.1007/s10847-008-9484-7
CrossRef
CAS
Google Scholar
Maity B, Chatterjee A, Ahmed SA, Seth D (2017) Deciphering the perturbation effect of urea on the supramolecular host-guest interaction of biologically active hydrophobic molecule inside the nanocavity of cyclodextrins. J Lumin 183:238–250. https://doi.org/10.1016/j.jlumin.2016.11.037
CrossRef
CAS
Google Scholar
Majumdar S, Srirangam R (2009) Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: a natural bioflavonoid. Pharm Res 26(5):1217–1225. https://doi.org/10.1007/s11095-008-9729-6
CrossRef
CAS
Google Scholar
Makhlof A, Miyazaki Y, Tozuka Y, Takeuchi H (2008) Cyclodextrins as stabilizers for the preparation of drug nanocrystals by the emulsion solvent diffusion method. Int J Pharm 357:280–285. https://doi.org/10.1016/j.ijpharm.2008.01.025
CrossRef
CAS
Google Scholar
Malaekeh-Nikouei B, Nassirli H, Davies N (2007) Enhancement of cyclosporine aqueous solubility using α- and hydroxypropyl β-cyclodextrin mixtures. J Incl Phenom Macrocycl Chem 59:245–250. https://doi.org/10.1007/s10847-007-9321-4
CrossRef
CAS
Google Scholar
Manakov AY, Rodionova TV, Aladko LS, Villevald GV, Lipkowski JS, Zelenina LN, Chusova TP, Karpova TD (2016) α-Cyclodextrin - water binary system. New data on dehydration of α-cyclodextrin hexahydrate. J Chem Thermodyn 101:251–259. https://doi.org/10.1016/j.jct.2016.06.008
CrossRef
CAS
Google Scholar
Marreto RN, Almeida EECV, Alves PB, Niculau ES, Nunes RS, Matos CRS, Antunes de Souza Araújo A (2008) Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropyl-β-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermochim Acta 475:53–58. https://doi.org/10.1016/j.tca.2008.06.015
CrossRef
CAS
Google Scholar
Martins Mendes Gomes L, Petito N, Gonçalves Costa V, Quintanilha Falcão D, de Lima Araújo KG (2014) Inclusion complexes of red bell pepper pigments with β-cyclodextrin: preparation, characterisation and application as natural colorant in yogurt. Food Chem 148:428–436. https://doi.org/10.1016/j.foodchem.2012.09.065
CrossRef
CAS
Google Scholar
Martins A d P, Craveiro AA, Machado MIL, Raffin FN, Moura TF, Novák C, Éhen Z (2007) Preparation and characterization of Mentha x villosa Hudson oil-β-cyclodextrin complex. J Therm Anal Calorim 88:363–371
CrossRef
CAS
Google Scholar
Mathot VBF, Benoist L (1994) Calorimetry and thermal analysis of polymers. Hanser Publishers, Munich
Google Scholar
de Matos Jensen CE, Souza dos Santos RA, Denadai AML, Santos CFF, Braga ANG, Sinisterra RD (2010) Pharmaceutical composition of valsartan: β-cyclodextrin: physico-chemical characterization and anti-hypertensive evaluation. Molecules 15:4067–4084. https://doi.org/10.3390/molecules15064067
CrossRef
CAS
Google Scholar
Mazzobre MF, dos Santos CI, del Pilar Buera M (2011) Solubility and stability of β-cyclodextrin-terpineol inclusion complex as affected by water. Food Biophysics 6:274–280. https://doi.org/10.1007/s11483-011-9208-1
CrossRef
Google Scholar
Meier MM, Luiz MTB, Szpoganicz B, Soldi V (2001) Thermal analysis behavior of β- and γ-cyclodextrin inclusion complexes with capric and caprilic acid. Thermochim Acta 375:153–160
CrossRef
CAS
Google Scholar
Meisel T (1982) Review on problems, techniques and trends in thermal analysis. Fresen J Anal Chem 312:83–95
CrossRef
CAS
Google Scholar
Menczel JD, Bruce Prime R (2009) Thermal analysis of polymers. Fundamentals and applications. John Wiley & Sons, Inc, Hoboken
CrossRef
Google Scholar
Menezes PP, Serafini MR, Santana BV, Nunes RS, Quintans LJ Jr, Silva GF, Medeiros IA, Marchioro M, Fraga BP, Santos MRV, Antunes de Souza Araújo A (2012) Solid-state β-cyclodextrin complexes containing geraniol. Thermochim Acta 548:45–50. https://doi.org/10.1016/j.tca.2012.08.023
CrossRef
CAS
Google Scholar
Menezes PP, Serafini MR, Quintans-Júnior LJ, Silva GF, Oliveira JF, Carvalho FMS, Souza JCC, Matos JR, Alves PB, Matos IL, Hădărugă DI, Antunes de Souza Araújo A (2014) Inclusion complex of (−)-linalool and β-cyclodextrin. J Therm Anal Calorim 115(3):2429–2437. https://doi.org/10.1007/s10973-013-3367-x
CrossRef
CAS
Google Scholar
Menezes PP, Serafini MR, de Carvalho YMBG, Santana DVS, Lima BS, Quintans-Júnior LJ, Marreto RN, de Aquino TM, Sabino AR, Scotti L, Scotti MT, Grangeiro-Júnior S, Araújo AAS (2016) Kinetic and physical-chemical study of the inclusion complex of β -cyclodextrin containing carvacrol. J Mol Struct 1125:323–330. https://doi.org/10.1016/j.molstruc.2016.06.062
CrossRef
CAS
Google Scholar
Michalska P, Wojnicz A, Ruiz-Nuño A, Abril S, Buendia I, León R (2017) Inclusion complex of ITH12674 with 2-hydroxypropyl-β -cyclodextrin: preparation, physical characterization and pharmacological effect. Carbohydr Polym 157:94–104. https://doi.org/10.1016/j.carbpol.2016.09.072
CrossRef
CAS
Google Scholar
Mofaddel N, Fourmentin S, Guillen F, Landy D, Gouhier G (2016) Ionic liquids and cyclodextrin inclusion complexes: limitation of the affinity capillary electrophoresis technique. Anal Bioanal Chem 408:8211–8220. https://doi.org/10.1007/s00216-016-9931-z
CrossRef
CAS
Google Scholar
Monteil M, Lecouvey M, Landy D, Ruellan S, Mallard I (2017) Cyclodextrins: a promising drug delivery vehicle for bisphosphonate. Carbohydr Polym 156:285–293. https://doi.org/10.1016/j.carbpol.2016.09.030
CrossRef
CAS
Google Scholar
Mourtzinos I, Kalogeropoulos N, Papadakis SE, Konstantinou K, Karathanos VT (2008) Encapsulation of nutraceutical monoterpenes in β-cyclodextrin and modified starch. J Food Sci S: Sensory and Food Quality 73(1):S89–S94. https://doi.org/10.1111/j.1750-3841.2007.00609.x
CrossRef
CAS
Google Scholar
Muñoz-Ruiz A, Paronen P (1997) Particle and powder properties of cyclodextrins. Int J Pharm 148:33–39
CrossRef
Google Scholar
Mura P (2015) Analytical techniques for characterization of cyclodextrin complexesin the solid state: a review. J Pharm Biomed Anal 113:226–238. https://doi.org/10.1016/j.jpba.2015.01.058
CrossRef
CAS
Google Scholar
Mura P, Maestrelli F, Cirri M (2003) Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and aminoacids. Int J Pharm 260:293–302. https://doi.org/10.1016/S0378-5173(03)00265-5
CrossRef
CAS
Google Scholar
Neoh TL, Yamauchi K, Yoshii H, Furuta T (2008) Kinetic study of thermally stimulated dissociation of inclusion complex of 1-methylcyclopropene with α-cyclodextrin by thermal analysis. J Phys Chem B 112:15914–15920. https://doi.org/10.1021/jp806233c
CrossRef
CAS
Google Scholar
Nerome H, Machmudah S, Wahyudiono FR, Higashiura T, Youn Y-S, Lee Y-W, Goto M (2013) Nanoparticle formation of lycopene/β–cyclodextrin inclusion complex using supercritical antisolvent precipitation. J Supercrit Fluids 83:97–103. https://doi.org/10.1016/j.supflu.2013.08.014
CrossRef
CAS
Google Scholar
Nikolić V, Stanković M, Nikolić L, Nikolić G, Ilić-Stojanović S, Popsavin M, Zlatković S, Kundaković T (2013) Inclusion complexes with cyclodextrin and usnic acid. J Incl Phenom Macrocycl Chem 76:173–182. https://doi.org/10.1007/s10847-012-0187-8
CrossRef
CAS
Google Scholar
Novák C, Éhen Z, Fodor M, Jicsinszky L, Orgoványi J (2006) Application of combined thermoanalytical techniques in the investigation of cyclodextrin inclusion complexes. J Therm Anal Calorim 84:693–701. https://doi.org/10.1007/s10973-005-7605-8
CrossRef
CAS
Google Scholar
Nuchuchua O, Saesoo S, Sramala I, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res Int 42:1178–1185. https://doi.org/10.1016/j.foodres.2009.06.006
CrossRef
CAS
Google Scholar
Ol’khovich MV, Sharapova AV, Blokhina SV, Skachilov SY, Kesarev OG, Perlovich GL (2016) Physicochemical characteristics of the inclusion complexes of biologically active compounds with 2-hydroxypropyl-β-cyclodextrin. Thermochim Acta 639:1–9. https://doi.org/10.1016/j.tca.2016.07.008
CrossRef
CAS
Google Scholar
Oliveira MGB, Brito RG, Santos PL, Araújo-Filho HG, Quintans JSS, Menezes PP, Serafini MR, Carvalho YMBG, Silva JC, Almeida JRGS, Scotti L, Scotti MT, Shanmugam S, Thangaraj P, Araújo AAS, Quintans-Júnior LJ (2016) α-Terpineol, a monoterpene alcohol, complexed with β-cyclodextrin exerts antihyperalgesic effect in animal model for fibromyalgia aided with docking study. Chem Biol Interact 254:54–62. https://doi.org/10.1016/j.cbi.2016.05.029
CrossRef
CAS
Google Scholar
Onyeji CO, Omoruyi SI, Oladimeji FA, Soyinka JO (2009) Physicochemical characterization and dissolution properties of binary systems of pyrimethamine and 2-hydroxypropyl-β-cyclodextrin. Afr J Biotechnol 8(8):1651–1659
CAS
Google Scholar
Ozawa T (2000) Thermal analysis - review and prospect. Thermochim Acta 355:35–42
CrossRef
CAS
Google Scholar
Paczkowska M, Mizera M, Szymanowska-Powałowska D, Lewandowska K, Błaszczak W, Gościańska J, Pietrzak R, Cielecka-Piontek J (2016) β-Cyclodextrin complexation as an effective drug delivery system for meropenem. Eur J Pharm Biopharm 99:24–34. https://doi.org/10.1016/j.ejpb.2015.10.013
CrossRef
CAS
Google Scholar
Partanen R, Ahro M, Hakala M, Kallio H, Forssell P (2002) Microencapsulation of caraway extract in β-cyclodextrin and modified starches. Eur Food Res Technol 214:242–247. https://doi.org/10.1007/s00217-001-0446-1
CrossRef
CAS
Google Scholar
dos Passos Menezes P, Barbosa Pereira dos Santos P, Azevedo Dória GA, Hipólito de Sousa BM, Russo Serafini M, Santos Nunes P, Quintans-Júnior LJ, Lisboa de Matos I, Alves PB, Bezerra DP, Mendonça Júnior FJB, da Silva GF, de Aquino TM, de Souza Bento E, Scotti MT, Scotti L, Antunes de Souza Araújo A (2017) Molecular modeling and physicochemical properties of supramolecular complexes of limonene with α- and β-cyclodextrins. AAPS PharmSciTech 18(1):49–57. https://doi.org/10.1208/s12249-016-0516-0
CrossRef
CAS
Google Scholar
Paulik F, Paulik J (1978) Simultaneous techniques in thermal analysis. Analyst 103:417–437
CrossRef
CAS
Google Scholar
Pereva S, Sarafska T, Bogdanova S, Spassov Т (2016) Efficiency of “cyclodextrin-ibuprofen” inclusion complex formation. Journal of Drug Delivery Science and Technology 35:34–39. https://doi.org/10.1016/j.jddst.2016.04.006
CrossRef
CAS
Google Scholar
Ponce Cevallos PA, del Pilar Buera M, Elizalde BE (2010) Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. J Food Eng 99:70–75. https://doi.org/10.1016/j.jfoodeng.2010.01.039
CrossRef
CAS
Google Scholar
Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C (2014) Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B: Biointerfaces 117:520–527. https://doi.org/10.1016/j.colsurfb.2014.03.005
CrossRef
CAS
Google Scholar
Pralhad T, Rajendrakumar K (2004) Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharm Biomed Anal 34:333–339. https://doi.org/10.1016/S0731-7085(03)00529-6
CrossRef
CAS
Google Scholar
Reddy MN, Rehana T, Ramakrishna S, Chowdary KPR, Diwan PV (2004) β-Cyclodextrin complexes of celecoxib: molecular-modeling, characterization, and dissolution studies. AAPS PharmSci 6(1):1–9. Article 7
CrossRef
Google Scholar
Ren Y, Liu Y, Niu R, Liao X, Zhang J, Yang B (2016) Host-guest inclusion system of oleanolic acid with methyl-β-cyclodextrin: preparation, characterization and anticancer activity. J Mol Struct 1117:1–7. https://doi.org/10.1016/j.molstruc.2016.03.071
CrossRef
CAS
Google Scholar
da Rocha Ferreira F, Valentim IB, Ramones ELC, Salles Trevisan MT, Olea-Azar C, Perez-Cruz F, de Abreu FC, Fonseca Goulart MO (2013) Antioxidant activity of the mangiferin inclusion complex with β-cyclodextrin. LWT Food Sci Technol 51:129–134. https://doi.org/10.1016/j.lwt.2012.09.032
CrossRef
CAS
Google Scholar
Rocha BA, Rodrigues MR, Pires Bueno PC, de Mello Costa-Machado AR, de Oliveira Lima Leite Vaz MM, Nascimento AP, Barud HS, Berretta-Silva AA (2012) Preparation and thermal characterization of inclusion complex of Brazilian green propolis and hydroxypropyl-β-cyclodextrin. Increased water solubility of the chemical constituents and antioxidant activity. J Therm Anal Calorim 108:87–94. https://doi.org/10.1007/s10973-011-1713-4
CrossRef
CAS
Google Scholar
Rossel CP, Carreño JS, Rodríguez-Baeza M, Alderete JB (2000) Inclusion complex of the antiviral drug acyclovir with cyclodextrin in aqueous solution and in solid phase. Quím Nova 23(6):749–752
CrossRef
Google Scholar
Rudrangi SRS, Kaialy W, Ghori MU, Trivedi V, Snowden MJ, Alexander BD (2016) Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process. Eur J Pharm Biopharm 104:164–170. https://doi.org/10.1016/j.ejpb.2016.04.024
CrossRef
CAS
Google Scholar
Şamlı M, Bayraktar O, Korel F (2014) Characterization of silk fibroin based films loaded with rutin–β-cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 80(1):37–49. https://doi.org/10.1007/s10847-014-0396-4
CrossRef
CAS
Google Scholar
dos Santos C, del Pilar Buera M, Mazzobre MF (2011) Phase solubility studies of terpineol with β-cyclodextrins and stability of the freeze-dried inclusion complex. Procedia Food Science 1:355–362. https://doi.org/10.1016/j.profoo.2011.09.055
CrossRef
CAS
Google Scholar
dos Santos C, del Pilar Buera M, Mazzobre MF (2012) Influence of ligand structure and water interactions on the physical properties of β-cyclodextrins complexes. Food Chem 132:2030–2036. https://doi.org/10.1016/j.foodchem.2011.12.044
CrossRef
CAS
Google Scholar
Santos EH, Kamimura JA, Hill LE, Gomes CL (2015) Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT Food Sci Technol 60:583–592. https://doi.org/10.1016/j.lwt.2014.08.046
CrossRef
CAS
Google Scholar
Santos PL, Brito RG, Oliveira MA, Quintans JSS, Guimarães AG, Santos MRV, Menezes PP, Serafini MR, Menezes IRA, Coutinho HDM, Araújo AAS, Quintans-Júnior LJ (2016) Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model. Phytomedicine 23:948–957. https://doi.org/10.1016/j.phymed.2016.06.007
CrossRef
CAS
Google Scholar
Sapino S, Carlotti ME, Caron G, Ugazio E, Cavalli R (2009) In silico design, photostability and biological properties of the complex resveratrol/hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 63:171–180. https://doi.org/10.1007/s10847-008-9504-7
CrossRef
CAS
Google Scholar
Sapte S, Pore Y (2016) Inclusion complexes of cefuroxime axetil with β-cyclodextrin: physicochemical characterization, molecular modeling and effect of L-arginine on complexation. J Pharm Anal 6:300–306. https://doi.org/10.1016/j.jpha.2016.03.004
CrossRef
Google Scholar
Sasako H, Kihara F, Koyama K, Higashi K, Yamamoto K, Moribe K (2016) A novel capsule-like structure of micro-sized particles formed by phytosterol ester and γ-cyclodextrin in water. Food Chem 210:269–275. https://doi.org/10.1016/j.foodchem.2016.04.103
CrossRef
CAS
Google Scholar
Sathigari S, Chadha G, Lee Y-HP, Wright N, Parsons DL, Rangari VK, Fasina O, Babu RJ (2009) Physicochemical characterization of efavirenz–cyclodextrin inclusion complexes. AAPS PharmSciTech 10(1):81–87. https://doi.org/10.1208/s12249-008-9180-3
CrossRef
CAS
Google Scholar
Sbârcea L, Ledeţi I, Drăgan L, Kurunczi L, Fuliaş A, Udrescu L (2015) Fosinopril sodium–hydroxypropyl-β-cyclodextrin inclusion complex. Thermal decomposition kinetics and compatibility studies. J Therm Anal Calorim 120:981–990. https://doi.org/10.1007/s10973-015-4450-2
CrossRef
CAS
Google Scholar
Sbârcea L, Udrescu L, Ledeţi I, Szabadai Z, Fuliaş A, Sbârcea C (2016) β-Cyclodextrin inclusion complexes of lisinopril and zofenopril. Physicochemical characterization and compatibility study of lisinopril-β-cyclodextrin with lactose. J Therm Anal Calorim 123:2377–2390. https://doi.org/10.1007/s10973-015-5045-7
CrossRef
CAS
Google Scholar
Serafini MR, Menezes PP, Costa LP, Lima CM, Quintans LJ Jr, Cardoso JC, Matos JR, Soares-Sobrinho JL, Grangeiro S Jr, Nunes PS, Bonjadim LR, Antunes de Souza Araújo A (2012) Interaction of p-cymene with β-cyclodextrin. J Therm Anal Calorim 109:951–955. https://doi.org/10.1007/s10973-011-1736-x
CrossRef
CAS
Google Scholar
Serri C, Argirò M, Piras L, Mita DG, Saija A, Mita L, Forte M, Giarra S, Biondi M, Crispi S, Mayol L (2017) Nano-precipitated curcumin loaded particles: effect of carrier size and drug complexation with (2-hydroxypropyl)-β-cyclodextrin on their biological performances. Int J Pharm 520:21–28. https://doi.org/10.1016/j.ijpharm.2017.01.049
CrossRef
CAS
Google Scholar
Siró I, Fenyvesi É, Szente L, De Meulenaer B, Devlieghere F, Orgoványi J, Sényi J, Barta J (2006) Release of alpha-tocopherol from antioxidative low-density polyethylene film into fatty food simulant: influence of complexation in beta-cyclodextrin. Food Addit Contam 23(8):845–853. https://doi.org/10.1080/02652030600699064
CrossRef
CAS
Google Scholar
Skiba M, Bounoure F, Barbot C, Arnaud P, Skiba M (2005) Development of cyclodextrin microspheres for pulmonary drug delivery. J Pharm Pharm Sci 8(3):409–418
CAS
Google Scholar
Song LX, Teng CF, Yang Y (2006) Preparation and characterization of the solid inclusion compounds of α-, β-cyclodextrin with phenylalanine (D-, L- and DL-Phe) and tryptophan (D-, L- and DL-Trp). J Incl Phenom Macrocycl Chem 54:221–232. https://doi.org/10.1007/s10847-005-7970-8
CrossRef
CAS
Google Scholar
Song LX, Teng CF, Xu P, Wang HM, Zhang ZQ, Liu QQ (2008) Thermal decomposition behaviors of β-cyclodextrin, its inclusion complexes of alkyl amines, and complexed β-cyclodextrin at different heating rates. J Incl Phenom Macrocycl Chem 60:223–233. https://doi.org/10.1007/s10847-007-9369-1
CrossRef
CAS
Google Scholar
Songkro S, Hayook N, Jaisawang J, Maneenuan D, Chuchome T, Kaewnopparat N (2012) Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J Incl Phenom Macrocycl Chem 72:339–355. https://doi.org/10.1007/s10847-011-9985-7
CrossRef
CAS
Google Scholar
Sreenivasan K (2001) Use of differential scanning calorimetry to study the replacement of a guest molecule from cyclodextrin-guest inclusion complexes. Anal Lett 34(2):307–311
CrossRef
CAS
Google Scholar
Szafranek A, Szafranek J (1993) Thermogravimetric properties of inclusion complexes of β-cyclodextrin with benzene, acetylsalicylic acid and methyl salicylate. J Incl Phenom Mol Recognit Chem 15:351–358
CrossRef
CAS
Google Scholar
Szejtli J (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76(10):1825–1845
CrossRef
CAS
Google Scholar
Szente L, Szejtli J, Szemán J, Kató L (1993) Fatty acid-cyclodextrin complexes: properties and applications. J Incl Phenom Mol Recognit Chem 16:339–354
CrossRef
CAS
Google Scholar
Tan J, Meng N, Fan Y, Su Y, Zhang M, Xiao Y, Zhou N (2016) Hydroxypropyl-β-cyclodextrin-graphene oxide conjugates: carriers for anti-cancer drugs. Mater Sci Eng C 61:681–687. https://doi.org/10.1016/j.msec.2015.12.098
CrossRef
CAS
Google Scholar
Tao F, Hill LE, Peng Y, Gomes CL (2014) Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT Food Sci Technol 59:247–255. https://doi.org/10.1016/j.lwt.2014.05.037
CrossRef
CAS
Google Scholar
Teramoto Y (1990) Thermal analysis - as a method of material characterization. A review. Anal Sci 6:635–643
CrossRef
CAS
Google Scholar
Thiry J, Krier F, Ratwatte S, Thomassin J-M, Jerome C, Evrard B (2017) Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes. Eur J Pharm Sci 96:590–597. https://doi.org/10.1016/j.ejps.2016.09.032
CrossRef
CAS
Google Scholar
Todorova NA, Schwarz FP (2007) The role of water in the thermodynamics of drug binding to cyclodextrin. J Chem Thermodyn 39:1038–1048. https://doi.org/10.1016/j.jct.2006.12.019
CrossRef
CAS
Google Scholar
Ünlüsayin M, Hădărugă NG, Rusu G, Gruia AT, Păunescu V, Hădărugă DI (2016) Nano-encapsulation competitiveness of omega-3 fatty acids and correlations of thermal analysis and Karl Fischer water titration for European anchovy (Engraulis encrasicolus L.) oil/β-cyclodextrin complexes. LWT Food Sci Technol 68:135–144. https://doi.org/10.1016/j.lwt.2015.12.017
CrossRef
CAS
Google Scholar
Uyar T, Hunt MA, Gracz HS, Tonelli AE (2006) Crystalline cyclodextrin inclusion compounds formed with aromatic guests: guest-dependent stoichiometries and hydration-sensitive crystal structures. Cryst Growth Des 6(5):1113–1119. https://doi.org/10.1021/cg050500+
CrossRef
CAS
Google Scholar
Veiga MD, Merino M (2002) Interactions of oxyphenbutazone with different cyclodextrins in aqueous medium and in the solid state. J Pharm Biomed Anal 28:973–982
CrossRef
CAS
Google Scholar
Veiga MD, Merino M, Fernández D, Lozano R (2002) Characterization of some cyclodextrin derivatives by thermal analysis. J Therm Anal Calorim 68:511–516
CrossRef
CAS
Google Scholar
Wang Z, Zhang X, Deng Y, Wang T (2007) Complexation of hydrophobic drugs with hydroxypropyl-β-cyclodextrin by lyophilization using a tertiary butyl alcohol system. J Incl Phenom Macrocycl Chem 57:349–354. https://doi.org/10.1007/s10847-006-9261-4
CrossRef
CAS
Google Scholar
Wang J, Cao Y, Sun B, Wang C (2011a) Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem 127:1680–1685. https://doi.org/10.1016/j.foodchem.2011.02.036
CrossRef
CAS
Google Scholar
Wang T, Li B, Si H, Lin L, Chen L (2011b) Release characteristics and antibacterial activity of solid state eugenol/β-cyclodextrin inclusion complex. J Incl Phenom Macrocycl Chem 71:207–213. https://doi.org/10.1007/s10847-011-9928-3
CrossRef
CAS
Google Scholar
Wang X, Luo Z, Xiao Z (2014) Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex. Carbohydr Polym 101:1027–1032. https://doi.org/10.1016/j.carbpol.2013.10.042
CrossRef
CAS
Google Scholar
Wang L, Yan J, Li Y, Xu K, Li S, Tang P, Li H (2016) The influence of hydroxypropyl-β-cyclodextrin on the solubility, dissolution, cytotoxicity, and binding of riluzole with human serum albumin. J Pharm Biomed Anal 117:453–463. https://doi.org/10.1016/j.jpba.2015.09.033
CrossRef
CAS
Google Scholar
Wszelaka-Rylik M (2017) Thermodynamics of β-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances. J Therm Anal Calorim 127:1825–1834. https://doi.org/10.1007/s10973-016-5467-x
CrossRef
CAS
Google Scholar
Wszelaka-Rylik M, Gierycz P (2013) Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs. J Therm Anal Calorim 111:2029–2035. https://doi.org/10.1007/s10973-012-2251-4
CrossRef
CAS
Google Scholar
Wunderlich B (2007) Thermal analysis of macromolecules. A personal review. J Therm Anal Calorim 89(2):321–356
CrossRef
CAS
Google Scholar
Xu P, Song LX, Wang HM (2008) Study on thermal decomposition behavior of survived β-cyclodextrin in its inclusion complex of clove oil by nonisothermal thermogravimetry and gas chromatography coupled to time-of-flight mass spectrometry analyses. Thermochim Acta 469:36–42. https://doi.org/10.1016/j.tca.2007.12.009
CrossRef
CAS
Google Scholar
Yang Y, Li X, Chen J, Chen H, Bao X (2003) ZnO nanoparticles prepared by thermal decomposition of β-cyclodextrin coated zinc acetate. Chem Phys Lett 373:22–27. https://doi.org/10.1016/S0009-2614(03)00562-1
CrossRef
CAS
Google Scholar
Yang B, Zhao Y-L, Yang X, Liao X-L, Yang J, Zhang J-H, Gao C-Z (2013a) Scutellarin-cyclodextrin conjugates: synthesis, characterization and anticancer activity. Carbohydr Polym 92:1308–1314. https://doi.org/10.1016/j.carbpol.2012.10.012
CrossRef
CAS
Google Scholar
Yang X, Zhao Y, Chen Y, Liao X, Gao C, Xiao D, Qin Q, Yi D, Yang B (2013b) Host–guest inclusion system of mangiferin with β-cyclodextrin and its derivatives. Mater Sci Eng C 33:2386–2391. https://doi.org/10.1016/j.msec.2013.02.002
CrossRef
CAS
Google Scholar
Yang Y, Gao J, Ma X, Huang G (2017) Inclusion complex of tamibarotene with hydroxypropyl-β -cyclodextrin: preparation, characterization, invitro and in-vivo evaluation. Asian J Pharm Sci 12:187–192. https://doi.org/10.1016/j.ajps.2016.08.009
CrossRef
Google Scholar
Yatsu FKJ, Koester LS, Lula I, Passos JJ, Sinisterra R, Bassani VL (2013) Multiple complexation of cyclodextrin with soy isoflavones present in an enriched fraction. Carbohydr Polym 98:726–735. https://doi.org/10.1016/j.carbpol.2013.06.062
CrossRef
CAS
Google Scholar
Yu S-Z, Li X-T, Li J-H, Wang J-Y, Tian S-J (1997) Kinetic studies on the thermal dissociation of β-cyclodextrin-cinnamyl alcohol inclusion complex. J Therm Anal 49:1517–1525
CrossRef
CAS
Google Scholar
Yuan C, Jin Z, Xu X, Zhuang H, Shen W (2008) Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Food Chem 109:264–268. https://doi.org/10.1016/j.foodchem.2007.07.051
CrossRef
CAS
Google Scholar
Yuan C, Liu B, Liu H (2015) Characterization of hydroxypropyl-β -cyclodextrins with different substitution patterns via FTIR, GC-MS, and TG-DTA. Carbohydr Polym 118:36–40. https://doi.org/10.1016/j.carbpol.2014.10.070
CrossRef
CAS
Google Scholar
Zhang W, Chen M, Diao G (2011) Preparation and electrochemical behavior of water-soluble inclusion complex of ferrocene with β-cyclodextrin polymer. Electrochim Acta 56:5129–5136. https://doi.org/10.1016/j.electacta.2011.03.062
CrossRef
CAS
Google Scholar
Zhang W, Li X, Yu T, Yuan L, Rao G, Li D, Mu C (2015) Preparation, physicochemical characterization and release behavior of the inclusion complex of trans-anethole and β-cyclodextrin. Food Res Int 74:55–62. https://doi.org/10.1016/j.foodres.2015.04.029
CrossRef
CAS
Google Scholar
Zhang J-Q, Jiang K-M, Xie X-G, Jin Y, Lin J (2016) Water-soluble inclusion complexes of trans-polydatin by cyclodextrin complexation: preparation, characterization and bioactivity evaluation. J Mol Liq 219:592–598. https://doi.org/10.1016/j.molliq.2016.03.054
CrossRef
CAS
Google Scholar
Zhang C-L, Liu J-C, Yang W-B, Chen D-L, Jiao Z-G (2017) Experimental and molecular docking investigations on the inclusion mechanism of the complex of phloridzin and hydroxypropyl-β-cyclodextrin. Food Chem 215:124–128. https://doi.org/10.1016/j.foodchem.2016.07.155
CrossRef
CAS
Google Scholar
Zhou Q, Wei X, Dou W, Chou G, Wang Z (2013) Preparation and characterization of inclusion complexes formed between baicalein and cyclodextrins. Carbohydr Polym 95:733–739. https://doi.org/10.1016/j.carbpol.2013.02.038
CrossRef
CAS
Google Scholar
Zhu LH, Song LX, Guo XQ, Dang Z (2010) Comparison in thermal behaviors of homologues, derivatives and adducts of β-cyclodextrin. Thermochim Acta 507-508:77–83. https://doi.org/10.1016/j.tca.2010.04.031
CrossRef
CAS
Google Scholar
Zhu G, Feng N, Xiao Z, Zhou R, Niu Y (2015) Production and pyrolysis characteristics of citral-monochlorotriazinyl-β-cyclodextrin inclusion complex. J Therm Anal Calorim 120:1811–1817. https://doi.org/10.1007/s10973-015-4498-z
CrossRef
CAS
Google Scholar