Skip to main content

Miscellaneous Conditions

  • Chapter
  • First Online:
Nuclear Medicine Companion

Abstract

Bone marrow scan is mainly used in conjunction with radiolabeled leukocyte imaging to differentiate uptake due to infection from the normal bone marrow [1]. It can also be used to assess bone marrow expansion or depletion, extramedullary hematopoiesis, and bone marrow defects or infarctions and for planning radiation therapy in oncologic patients [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palestro CJ, Love C, Tronco GG, Tomas MB, Rini JN (2006) Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection. Radiographics 26(3):859–870

    Article  PubMed  Google Scholar 

  2. Bronn LJ, Paquelet JR, Tetalman MR (1980) Intrathoracic extramedullary hematopoiesis: appearance on 99mTc sulfur colloid marrow scan. AJR Am J Roentgenol 134:1254–1255

    Article  CAS  PubMed  Google Scholar 

  3. Siddiqui AR, Oseas RS, Wellman HN, Doerr DR, Baehner RL (1979) Evaluation of bone-marrow scanning with technetium-99m sulfur colloid in pediatric oncology. J Nucl Med 20:379–386

    PubMed  CAS  Google Scholar 

  4. Elgazzar AH (2017) Bone marrow imaging. In: Elgazzar AH (ed) Orthophedic nuclear medicine. Springer, pp 309–310

    Chapter  Google Scholar 

  5. Vogler JB 3rd, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693

    Article  PubMed  Google Scholar 

  6. Valk PE, Guille J (1984) Measurement of splenic function with heat-damaged RBCs: effect of heating conditions: concise communication. J Nucl Med 25:965–968

    PubMed  CAS  Google Scholar 

  7. Ehrlich CP, Papanicolaou N, Treves S, Hurwitz RA, Richards P (1982) Splenic scintigraphy using Tc-99m-labeled heat-denatured red blood cells in pediatric patients: concise communication. J Nucl Med 23:209–213

    PubMed  CAS  Google Scholar 

  8. MacDonald A, Burrell S (2008) Infrequently performed studies in nuclear medicine: part 1. J Nucl Med Technol 36:132–143

    Article  PubMed  Google Scholar 

  9. Juergensen PH, Rizvi H, Caride VJ, Kliger AS, Finkelstein FO (1999) Value of scintigraphy in chronic peritoneal dialysis patients. Kidney Int 55:1111–1119

    Article  CAS  PubMed  Google Scholar 

  10. Tun KN, Tulchinsky M (2012) Pericatheter leak in a peritoneal dialysis patient: SPECT/CT diagnosis. Clin Nucl Med 37:625–628

    Article  PubMed  Google Scholar 

  11. Chen YC, Su YC, Chiu JS, Wei CK, Wang YF (2010) Peritoneo-scrotal shunting diagnosed by Tc-99m DTPA SPECT/CT imaging. Kidney Int 78:523

    Article  PubMed  Google Scholar 

  12. Van den Eeckhaut AC, Villeirs GM, Van de Wiele C, Versijpt JJ, Pattyn P et al (1999) Laparoscopic adjustable silicone gastric banding leakage assessed by 99mTc-pertechnetate scintigraphy. J Nucl Med 40:783–785

    PubMed  Google Scholar 

  13. Van Den Bossche B, Goethals I, Dierckx RA, Villeirs G, Pattyn P et al (2002) Leakage assessment in adjustable laparoscopic gastric banding: radiography versus (99m)Tc-pertechnetate scintigraphy. Eur J Nucl Med Mol Imaging 29:1128–1131

    Article  CAS  Google Scholar 

  14. Weiss H, Peer R, Nehoda H, Labeck B, Bonatti H et al (2001) Improved scintigraphic assessment of occult leakages in adjustable gastric bands using 99mTc-labelled human albumin colloid. Obes Surg 11:502–506

    Article  CAS  PubMed  Google Scholar 

  15. Mittermair RP, Weiss HG, Nehoda H, Peer R, Donnemiller E et al (2003) Band leakage after laparoscopic adjustable gastric banding. Obes Surg 13:913–917

    Article  PubMed  Google Scholar 

  16. Miller K, Rettenbecher L, Hell E (1996) Adjustments and leak detection of the adjustable silicone gastric band (ASGB) and Lap-Band™ adjustable gastric band (LAGB) system. Obes Surg 6:406–411

    Article  CAS  PubMed  Google Scholar 

  17. Von Denffer H, Dressler J, Pabst HW (1984) Lacrimal dacryoscintigraphy. Semin Nucl Med 14:8–15

    Article  Google Scholar 

  18. Brown M, El Gammal TAM, Luxenburg MN, Eubig C (1981) The value, limitations, and applications of nuclear dacryocystography. Semin Nucl Med 11:250–257

    Article  CAS  PubMed  Google Scholar 

  19. Detorakis ET, Zissimopoulos A, Ioannakis K, Kozobolis VP (2014) Lacrimal outflow mechanisms and the role of scintigraphy: current trends. World J Nucl Med 13:16–21

    Article  PubMed  PubMed Central  Google Scholar 

  20. Recommended methods for measurement of red-cell and plasma volume: International Committee for Standardization in Haematology (1980) J Nucl Med 21:793–800

    Google Scholar 

  21. Dworkin HJ, Premo M, Dees S (2007) Comparison of red cell and whole blood volume as performed using both chromium-51-tagged red cells and iodine-125-tagged albumin and using I-131-tagged albumin and extrapolated red cell volume. Am J Med Sci 334:37–40

    Article  PubMed  Google Scholar 

  22. Margouleff D (2013) Blood volume determination, a nuclear medicine test in evolution. Clin Nucl Med 38:534–537

    Article  PubMed  Google Scholar 

  23. McMullin MF (2008) The classification and diagnosis of erythrocytosis. Int J Lab Hematol 30:447–459

    PubMed  CAS  Google Scholar 

  24. Isbister JP (1987) The contracted plasma volume syndromes (relative polycythaemias) and their haemorheological significance. Baillieres Clin Haematol 1:665–693

    Article  CAS  PubMed  Google Scholar 

  25. Desai AG, Thakur ML (1985) Radiopharmaceuticals for spleen and bone marrow studies. Semin Nucl Med 15:229–238

    Article  CAS  PubMed  Google Scholar 

  26. Dawry FP, Rothenberg SP, Bierman L, Maayan ML (1988) Splenic sequestration of red blood cells: a computerized approach using two radionuclides. J Nucl Med Technol 16:185–186

    Google Scholar 

  27. Recommended method for radioisotope red-cell survival studies. International Committee for Standardization in Haematology (1980) Br J Haematol 45:659–666

    Google Scholar 

  28. Elgazzar AH (2014) Nuclear hematology. In: Elgazzar AH (ed) Synopsis of pathophysiology in nuclear medicine. Springer, p 300

    Chapter  Google Scholar 

  29. Perrotta S, Gallagher PG, Mohandas N (2008) Hereditary spherocytosis. Lancet 372:1411–1426

    Article  CAS  PubMed  Google Scholar 

  30. Valent P, Lechner K (2008) Diagnosis and treatment of autoimmune haemolytic anaemias in adults: a clinical review. Wien Klin Wochenschr 120:136–151

    Article  PubMed  Google Scholar 

  31. Recommended Method for Indium-111 Platelet Survival Studies. International Committee for Standardization in Hematology. Panel on Diagnostic Applications of Radionuclides (1988) J Nucl Med 29:564–566

    Google Scholar 

  32. Recommended methods for Radioisotope Platelet Survival Studies. The Panel on Diagnostic Application of Radioisotopes in Hematology, International Committee for Standardization in Hematology (1977) Blood 150:1137–1144

    Google Scholar 

  33. Oriuchi N, Korkmaz M, Kim EE, Delpassand ES, Wong F et al (1998) Role of indium-111 labelled platelet scintigraphy in the management of thrombocytopenic patients with malignant neoplasms. Eur J Nucl Med 25:247–252

    Article  CAS  PubMed  Google Scholar 

  34. Gauer RL, Braun MM (2012) Thrombocytopenia. Am Fam Physician 85:612–622

    PubMed  Google Scholar 

  35. Kistangari G, McCrae KR (2013) Immune thrombocytopenia. Hematol Oncol Clin North Am 27:495–520

    Article  PubMed  Google Scholar 

  36. Kuipers EJ, Brouwers TM, Hazenberg HJ (1991) Renal trapping of In-111 troponolate labeled platelets in thrombotic thrombocytopenic purpura. Clin Nucl Med 16:506–508

    Article  CAS  PubMed  Google Scholar 

  37. Suga K, Nishigauchi K, Shimizu K, Kume N, Matsunaga N et al (1997) SPECT with In-111 autologous platelets to detect residual splenic tissue in two patients with relapsed thrombocytopenia. Clin Nucl Med 22:141–146

    Article  CAS  PubMed  Google Scholar 

  38. Provan D, Stasi R, Newland AC, Blanchette VS, Bolton-Maggs P et al (2010) International consensus report on the investigation and management of primary immune thrombocytopenia. Blood 115:168–186

    Article  CAS  PubMed  Google Scholar 

  39. Mettler FA Jr, Guibertau MJ (1998) Essentials of nuclear medicine imaging. Gastrointestinal Tract, 4th edn. WB Saunders, Philadelphia, p 281

    Google Scholar 

  40. Briedis D, McIntyre PA, Judisch J, Wagner HN Jr (1973) An evaluation of a dual-isotope method for the measurement of vitamin B 12 absorption. J Nucl Med 14:135–141

    PubMed  CAS  Google Scholar 

  41. Elgazzar AH (2014) Nuclear hematology. In: Elgazzar AH (ed) Synopsis of pathophysiology in nuclear medicine. Springer, p 304

    Chapter  Google Scholar 

  42. Carmel R, Sinow RM, Siegel ME et al (1988) Food cobalamin malabsorption occurs frequently in patients with unexplained low serum cobalamin levels. Arch Intern Med 148:1715–1719

    Article  CAS  PubMed  Google Scholar 

  43. Allen LH (2008) Causes of vitamin B12 and folate deficiency. Food Nutr Bull 29(2 Suppl):S20–S34

    Article  PubMed  Google Scholar 

  44. Elgazzar AH (2014) Nuclear hematology. In: Elgazzar AH (ed) Synopsis of pathophysiology in nuclear medicine. Springer, p 303

    Chapter  Google Scholar 

  45. Higazy E, Al-Saeedi F, Loutfi I, Heiba S, Kalaoui M et al (2000) The impact of brushing teeth on carbon-14 urea breath test results. J Nucl Med Technol 28:162–164

    PubMed  CAS  Google Scholar 

  46. Society of Nuclear Medicine Procedure Guideline for C-14 Urea Breath Test version 3.0, approved June 23, 2001

    Google Scholar 

  47. Elgazzar AH (2014) Digestive system. In: Elgazzar AH (ed) Synopsis of pathophysiology in nuclear medicine. Springer, p 207

    Chapter  Google Scholar 

  48. Leide-Svegborn S, Stenström K, Olofsson M, Mattsson S, Nilsson LE et al (1999) Biokinetics and radiation doses for carbon-14 urea in adults and children undergoing the Helicobacter pylori breath test. Eur J Nucl Med 26:573–580

    Article  CAS  PubMed  Google Scholar 

  49. Bentur Y, Matsui D, Koren G (2009) Safety of 14C-UBT for diagnosis of Helicobacter pylori infection in pregnancy. Can Fam Physician 55:479–480

    PubMed  PubMed Central  Google Scholar 

  50. Ahuja V, Bal C, Sharma MP (1998) Can the C-14 urea breath test replace follow-up endoscopic biopsies in patients treated for Helicobacter pylori infection? Clin Nucl Med 23:815–819

    Article  CAS  PubMed  Google Scholar 

  51. Logan RPH (1998) Urea breath tests in the management of Helicobacter pylori infection. Gut 43(suppl I):S47–S50

    Article  PubMed  PubMed Central  Google Scholar 

  52. Elgazzar AH (2017) Bone marrow imaging. In: Elgazzar AH (ed) Ortophedic nuclear medicine. Springer, p 318

    Chapter  Google Scholar 

  53. Karimi M, Cohan N, Bagheri MH, Lotfi M, Omidvari S et al (2008) A lump on the head. Lancet 372:1436

    Article  PubMed  Google Scholar 

  54. Taher A, Skouri H, Jaber W, Kanj N (2001) Extramedullary hematopoiesis in a patient with beta-thalassemia intermedia manifesting as symptomatic pleural effusion. Hemoglobin 25:363–368

    Article  CAS  PubMed  Google Scholar 

  55. Urman M, O'Sullivan RA, Nugent RA, Lentle BC (1991) Intracranial extramedullary hematopoiesis. CT and bone marrow scan findings. Clin Nucl Med 16:431–434

    Article  CAS  PubMed  Google Scholar 

  56. Sebes JI, Massie JD, White TJ 3rd, Kraus AP (1984) Pelvic extramedullary hematopoiesis. J Nucl Med 25:209–210

    PubMed  CAS  Google Scholar 

  57. Gunes I, Yilmazlar T, Sarikaya I, Akbunar T, Irgil C (1994) Scintigraphic detection of splenosis: superiority of tomographic selective spleen scintigraphy. Clin Radiol 49:115–117

    Article  CAS  PubMed  Google Scholar 

  58. Massey MD, Stevens JS (1991) Residual spleen found on denatured red blood cell scan following negative colloid scans. J Nucl Med 32:2286–2287

    PubMed  CAS  Google Scholar 

  59. Bidet AC, Dreyfus-Schmidt G, Mas J, Combe J, Milleret P et al (1986) Diagnosis of splenosis: the advantages of splenic scintiscanning with Tc 99m heat-damaged red blood cells. Eur J Nucl Med 12:357–358

    Article  CAS  PubMed  Google Scholar 

  60. Alvarez R, Diehl KM, Avram A, Brown R, Piert M (2007) Localization of splenosis using 99mTc-damaged red blood cell SPECT/CT and intraoperative gamma probe measurements. Eur J Nucl Med Mol Imaging 34:969

    Article  PubMed  Google Scholar 

  61. Person RE, Bender JM (2000) Hepatic lesion differentiated from accessory spleen by a heat-damaged red blood cell scan. Clin Nucl Med 25:516–518

    Article  CAS  PubMed  Google Scholar 

  62. Cho Y, D’Intini V, Ranganathan D (2010) Acute hydrothorax complicating peritoneal dialysis: a case report. J Med Case Rep 4:355

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elgazzar, A.H., Sarikaya, I. (2018). Miscellaneous Conditions. In: Nuclear Medicine Companion. Springer, Cham. https://doi.org/10.1007/978-3-319-76156-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76156-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76155-8

  • Online ISBN: 978-3-319-76156-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics