Skip to main content

Oncology

  • Chapter
  • First Online:
Book cover Nuclear Medicine Companion

Abstract

Indications of whole body F-18 fluorodeoxyglucose (F-18 FDG) PET/CT include differentiation of benign from malignant lesions, staging in patients with known malignancies, monitoring the effect of therapy, detecting tumor recurrence, selecting regions for biopsy and guiding radiation therapy planning, and searching for an unknown primary tumor in patients with metastatic disease or paraneoplastic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K et al (2014) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Surasi DS, Bhambhvani P, Baldwin JA, Almodovar SE, O'Malley JP (2014) 18F-FDG PET and PET/CT patient preparation: a review of the literature. J Nucl Med Technol 42:5–13

    Article  PubMed  Google Scholar 

  3. Cheebsumon P, van Velden FH, Yaqub M, Hoekstra CJ, Velasquez LM et al (2011) Measurement of metabolic tumor volume: static versus dynamic FDG scans. EJNMMI Res 1:35

    Article  PubMed  PubMed Central  Google Scholar 

  4. Akhurst T, Ng VV, Larson SM, O’Donoghue JA, O’Neel J et al (2000) Tumor burden assessment with positron emission tomography with. Clin Positron Imaging 3:57–65

    Article  PubMed  CAS  Google Scholar 

  5. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662

    Article  PubMed  CAS  Google Scholar 

  6. Barrington SF, Maisey MN (1996) Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 37:1127–1129

    PubMed  CAS  Google Scholar 

  7. Söderlund V, Larsson SA, Jacobsson H (2007) Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging 34:1018–1022

    Article  PubMed  CAS  Google Scholar 

  8. Osman MM, Muzaffar R, Altinyay ME, Teymouri C (2011) FDG dose extravasations in PET/CT: frequency and impact on SUV measurements. Front Oncol 1:41

    Article  PubMed  PubMed Central  Google Scholar 

  9. Adams MC, Turkington TG, Wilson JM, Wong TZ (2010) A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol 195:310–320

    Article  PubMed  Google Scholar 

  10. Osman MM, Chaar BT, Muzaffar R, Oliver D, Reimers HJ et al (2010) 18F-FDG PET/CT of patients with cancer: comparison of whole-body and limited whole-body technique. AJR Am J Roentgenol 195:1397–1403

    Article  PubMed  Google Scholar 

  11. Huellner MW, Appenzeller P, Kuhn FP, Husmann L, Pietsch CM et al (2014) Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations. Radiology 273:859–869

    Article  PubMed  Google Scholar 

  12. Society of Nuclear Medicine Procedure Guideline for Breast Scintigraphy Version 2.0, approved June 2, 2004

    Google Scholar 

  13. Palmedo H, Schomburg A, Grunwald F, Mallmann P, Boldt I et al (1996) Scintimammography with Tc-99m MIBI in patients with suspicion of primary breast cancer. Nucl Med Biol 23:681–684

    Article  PubMed  CAS  Google Scholar 

  14. Peller P, Khedkar N, Martinez C (1996) Breast tumor scintigraphy. J Nuc Med Technol 24:198–203

    Google Scholar 

  15. Scopinaro F, Schillaci O, Scarpini M, Mingazzini PL, Di Macio L et al (1994) Technetium-99m Sestamibi: an indicator of breast cancer invasiveness. Eur J Nucl Med 21:984–987

    Article  PubMed  CAS  Google Scholar 

  16. Goldsmith SJ, Parsons W, Guiberteau MJ, Stern LH, Lanzkowsky L et al (2010) SNM practice guideline for breast scintigraphy with breast-specific gamma-cameras 1.0. J Nucl Med Technol 38:219–224

    Article  PubMed  Google Scholar 

  17. Giammarile F, Alazraki N, Aarsvold JN, Audisio RA, Glass E et al (2013) The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur J Nucl Med Mol Imaging 40:1932–1947

    Article  PubMed  CAS  Google Scholar 

  18. Giammarile F, Bozkurt MF, Cibula D, Pahisa J, Oyen WJ et al (2014) The EANM clinical and technical guidelines for lymphoscintigraphy and sentinel node localization in gynaecological cancers. Eur J Nucl Med Mol Imaging 41:1463–1477

    Article  PubMed  Google Scholar 

  19. Krasnow AZ, Hellman RS (1999) Lymphoscintigraphy revisited: 1999. In: Freeman LM (ed) Nuclear medicine annual. Mosby, St Louis, pp 17–97

    Google Scholar 

  20. De Cicco C, Cremonesi M, Luini A, Bartolomei M, Grana C et al (1998) Lymphoscintigraphy and radioguided biopsy of the sentinel axillary node in breast cancer. J Nucl Med 39:2080–2084

    PubMed  Google Scholar 

  21. Kaufmann M, Morrow M, von Minckwitz G, Harris JR, Biedenkopf Expert Panel Members (2010) Locoregional treatment of primary breast cancer: consensus recommendations from an international expert panel. Cancer 116:1184–1191

    Article  PubMed  Google Scholar 

  22. Schwartz GF, Giuliano AE, Veronesi U, Consensus Conference Committee (2002) Proceedings of the consensus conference on the role of sentinel lymph node biopsy in carcinoma of the breast. Breast 11:362–373

    Article  Google Scholar 

  23. Buck AK, Nekolla S, Ziegler S, Beer A, Krause BJ et al (2008) SPECT/CT. J Nucl Med 49:1305–1319

    Article  PubMed  Google Scholar 

  24. Lymphoseek prescribing information. Lymphoseek website. http://lymphoseek.com/assets/pdfs/Lymphoseek%20Package%20Insert%20-%20October%202014.pdf. Published 2013. Revised September 2014. Accessed 23 April 2015

  25. Baker JL, Pu M, Tokin CA, Hoh CK, Vera DR et al (2015) Comparison of [(99m)Tc]tilmanocept and filtered [(99m)Tc]sulfur colloid for identification of SLNs in breast cancer patients. Ann Surg Oncol 22:40–45

    Article  PubMed  Google Scholar 

  26. Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F et al (2017) (68)Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 44:1014–1024

    Article  PubMed  Google Scholar 

  27. Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Haller B et al (2016) Diagnostic efficacy of gallium-PSMA positron emission tomography compared to conventional imaging in lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol 195:1436–1443

    Article  PubMed  Google Scholar 

  28. Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A et al (2015) Evaluation of hybrid Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med 56:668–674

    Article  PubMed  Google Scholar 

  29. Parimi V, Goyal R, Poropatich K, Yang XJ (2014) Neuroendocrine differentiation of prostate cancer: a review. Am J Clin Exp Urol 2:273–285

    PubMed  PubMed Central  Google Scholar 

  30. Uliel L, Royal HD, Darcy MD, Zuckerman DA, Sharma A et al (2012) From the angio suite to the γ-camera: vascular mapping and 99mTc-MAA hepatic perfusion imaging before liver radioembolization—a comprehensive pictorial review. J Nucl Med 53:1736–1747

    Article  PubMed  CAS  Google Scholar 

  31. Society of Nuclear Medicine Procedure Guideline for Hepatic and Splenic Imaging version 3.0, approved July 20, 2003

    Google Scholar 

  32. Yang PJ, Thrall JH, Ensminger WD, Niederhuber JE, Gyves JW et al (1982) Perfusion scintigraphy (Tc-99m MAA) during surgery for placement of chemotherapy catheter in hepatic artery: concise communication. J Nucl Med 23:1066–1069

    PubMed  CAS  Google Scholar 

  33. Denecke T, Hildebrandt B, Lehmkuhl L, Peters N, Nicolaou A et al (2005) Fusion imaging using a hybrid SPECT-CT camera improves port perfusion scintigraphy for control of hepatic arterial infusion of chemotherapy in colorectal cancer patients. Eur J Nucl Med Mol Imaging 32:1003–1010

    Article  PubMed  CAS  Google Scholar 

  34. Carril JM, Quirce R, Serrano J, Banzo I, Jiménez-Bonilla JF et al (1997) Total-body scintigraphy with thallium-201 and iodine-131 in the follow-up of differentiated thyroid cancer. J Nucl Med 38:686–692

    PubMed  CAS  Google Scholar 

  35. Kessler LS, Ruiz A, Donovan Post MJ, Ganz WI, Brandon AH et al (1998) Thallium-201 brain SPECT of lymphoma in AIDS patients: pitfalls and technique optimization. AJNR Am J Neuroradiol 19:1105–1159

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Otsuka H, Shinbata H, Hieda M, Yamashita K, Kitamura H et al (2002) The retention indices of 201Tl-SPECT in brain tumors. Ann Nucl Med 16:455–459

    Article  PubMed  Google Scholar 

  37. Bartold SP, Donohoe KJ, Fletcher JW, Haynie TP, Henkin RE, Silberstein EB, Royal HD, Van den Abbeele A (1997) Procedure guideline for gallium scintigraphy in the evaluation of malignant disease. Society of Nuclear Medicine. J Nucl Med 38:990–994

    PubMed  CAS  Google Scholar 

  38. Morton KA, Jarboe J, Burke EM (2000) Gallium-67 imaging in lymphoma: tricks of the trade. J Nucl Med Technol 28:221–232

    PubMed  CAS  Google Scholar 

  39. Donahue DM, Leonard JC, Basmadjian GP, Nitschke RM, Hinkle GH et al (1981) Thymic gallium-67 localization in pediatric patients on chemotherapy: concise communication. J Nucl Med 22:1043–1048

    PubMed  CAS  Google Scholar 

  40. Small EJ, Venook AP, Damon LE (1993) Gallium-avid thymic hyperplasia in an adult after chemotherapy for Hodgkin disease. Cancer 72:905–908

    Article  PubMed  CAS  Google Scholar 

  41. Seabold JE, Palestro CJ, Brown ML, Datz FL, Forstrom LA et al (1997) Procedure guideline for gallium scintigraphy in inflammation. Society of Nuclear Medicine. J Nucl Med 38:994–997

    PubMed  CAS  Google Scholar 

  42. Johnson PM, Berdon WE, Baker DH, Fawwaz RA (1978) Thymic uptake of gallium-67 citrate in a healthy 4 year old boy. Pediatr Radiol 7:243–244

    Article  PubMed  CAS  Google Scholar 

  43. Bénard F, Romsa J, Hustinx R (2003) Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med 33:148–162

    Article  PubMed  Google Scholar 

  44. Fulham MJ, Melisi JW, Nishimiya J, Dwyer AJ, Di Chiro G (1993) Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 189:221–225

    Article  PubMed  CAS  Google Scholar 

  45. Meyer PT, Spetzger U, Mueller HD, Zeggel T, Sabri O et al (2000) High F-18 FDG uptake in a low-grade supratentorial ganglioma: a positron emission tomography case report. Clin Nucl Med 25:694–697

    Article  PubMed  CAS  Google Scholar 

  46. Spence AM, Muzi M, Mankoff DA, O'Sullivan SF, Link JM et al (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45:1653–1659

    PubMed  Google Scholar 

  47. Nihashi T, Dahabreh IJ, Terasawa T (2013) Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol 34:944–950

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Wong TZ, Turkington TG, Hawk TC, Coleman RE (2004) PET and brain tumor image fusion. Cancer J 10:234–242

    Article  PubMed  Google Scholar 

  49. Barker FG 2nd, Chang SM, Valk PE, Pounds TR, Prados MD (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79:115–126

    Article  PubMed  CAS  Google Scholar 

  50. De Witte O, Levivier M, Violon P, Salmon I, Damhaut P et al (1996) Prognostic value of positron emission tomography with [18F]fluoro-2-D-glucose in the low-grade glioma. J Neurosurg 39:470–477

    Google Scholar 

  51. Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911

    PubMed  CAS  Google Scholar 

  52. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952

    PubMed  CAS  Google Scholar 

  53. Kwee SA, Ko JP, Jiang CS, Watters MR, Coel MN (2007) Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology 244:557–565

    Article  PubMed  Google Scholar 

  54. Rohren EM, Provenzale JM, Barboriak DP, Coleman RE (2003) Screening for cerebral metastases with FDG PET in patients undergoing whole-body staging of noncentral nervous system malignancy. Radiology 226:181–187

    Article  PubMed  Google Scholar 

  55. Pieterman RM, Que TH, Elsinga PH, Pruim J, van Putten JW et al (2002) Comparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 43:167–172

    PubMed  Google Scholar 

  56. Schoder H, Yeung HW (2004) Positron emission imaging of head and neck cancer, including thyroid carcinoma. Semin Nucl Med 34:180–197

    Article  PubMed  Google Scholar 

  57. Schwartz DL, Rajendran J, Yueh B, Coltrera M, Anzai Y et al (2003) Staging of head and neck squamous cell cancer with extended-field FDG-PET. Arch Otolaryngol Head Neck Surg 129:1173–1178

    Article  PubMed  Google Scholar 

  58. Strobel K, Haerle SK, Stoeckli SJ, Schrank M, Soyka JD et al (2009) Head and neck squamous cell carcinoma (HNSCC)—detection of synchronous primaries with (18)F-FDG-PET/CT. Eur J Nucl Med Mol Imaging 36:919–927

    Article  PubMed  Google Scholar 

  59. Fischbein NJ, Aassar OS, Caputo GR, Kaplan MJ, Singer MI et al (1998) Clinical utility of positron emission tomography with 18F-fluorodeoxyglucose in detecting residual/recurrent squamous cell carcinoma of the head and neck. AJNR 19:1189–1196

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Li P, Zhuang H, Mozley PD, Denittis A, Yeh D et al (2001) Evaluation of recurrent squamous cell carcinoma of the head and neck with FDG positron emission tomography. Clin Nucl Med 26:131–135

    Article  PubMed  CAS  Google Scholar 

  61. Platzek I (2016) 18F-fluorodeoxyglucose PET/MR imaging in head and neck cancer. PET Clin 11:375–386

    Article  PubMed  Google Scholar 

  62. http://www.nccn.org/professionals/physician_gls/PDF/thyroid.pdf

  63. Choi JY, Lee KS, Kim HJ, Shim YM, Kwon OJ et al (2006) Focal thyroid lesions incidentally identified by integrated 18F-FDG PET/CT: clinical significance and improved characterization. J Nucl Med 47:609–615

    PubMed  Google Scholar 

  64. Chadwick JL, Khalid A, Wagner H, Stack BC Jr (2007) Teflon granuloma results in a false-positive “second primary” on 18F-2-deoxyglucose positron emission tomography in a patient with a history of nasopharyngeal cancer. Am J Otolaryngol 28:251–253

    Article  PubMed  Google Scholar 

  65. Johnson BE, Grayson J, Makuch RW, Linnoila RI, Anderson MJ et al (1990) Ten-year survival of patients with small-cell lung cancer treated with combination chemotherapy with or without irradiation. J Clin Oncol 3:396–401

    Article  Google Scholar 

  66. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung ANC et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images: from the fleischner society 2017. Radiology 284:228–243

    Article  PubMed  Google Scholar 

  67. Lowe VJ, Hoffman JM, DeLong DM, Patz EF Jr, Coleman ER (1994) Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med 35:1771–1776

    PubMed  CAS  Google Scholar 

  68. Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M et al (2001) Dual-time-point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 42:1412–1417

    PubMed  CAS  Google Scholar 

  69. Nestle U, Walter K, Schmidt S, Licht N, Nieder C et al (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597

    Article  PubMed  CAS  Google Scholar 

  70. Marom EM, McAdams HP, Erasmus JJ, Goodman PC, Culhane DK et al (1999) Staging non-small cell lung cancer with whole-body PET. Radiology 212:803–809

    Article  PubMed  CAS  Google Scholar 

  71. Lu YY, Chen JH, Liang JA, Chu S, Lin WY et al (2014) 18F-FDG PET or PET/CT for detecting extensive disease in small-cell lung cancer: a systematic review and meta-analysis. Nucl Med Commun 35:697–703

    Article  PubMed  CAS  Google Scholar 

  72. Erasmus JJ, McAdams HP, Rossi SE, Goodman PC, Coleman RE et al (2000) FDG PET of pleural effusions in patients with non-small cell lung cancer. AJR Am J Roentgenol 175:245–249

    Article  PubMed  CAS  Google Scholar 

  73. Kwek BH, Aquino SL, Fischman AJ (2004) Fluorodeoxyglucose positron emission tomography and CT after talc pleurodesis. Chest 125:2356–2360

    Article  PubMed  Google Scholar 

  74. Bénard F, Sterman D, Smith RJ, Kaiser LR, Albelda SM et al (1998) Metabolic imaging of malignant pleural mesothelioma with fluorodeoxyglucose positron emission tomography. Chest 114:713–722

    Article  PubMed  Google Scholar 

  75. Schneider DB, Clary-Macy C, Challa S, Sasse KC, Merrick SH et al (2000) Positron emission tomography with f18-fluorodeoxyglucose in the staging and preoperative evaluation of malignant pleural mesothelioma. J Thorac Cardiovasc Surg 120:128–133

    Article  PubMed  CAS  Google Scholar 

  76. Weiler-Sagie M, Bushelev O, Epelbaum R, Dann EJ, Haim N et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30

    Article  PubMed  Google Scholar 

  77. Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J Clin Oncol 25:571–578

    Article  PubMed  Google Scholar 

  78. Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C (2009) Report on the first international workshop on interim-PET-scan in lymphoma. Leuk Lymphoma 50:1257–1260

    Article  PubMed  Google Scholar 

  79. Moghbel MC, Kostakoglu L, Zukotynski K, Chen DL, Nadel H et al (2016) Response assessment criteria and their applications in lymphoma: part 1. J Nucl Med 57:928–935

    Article  PubMed  CAS  Google Scholar 

  80. Bodet-Milin C, Kraeber-Bodéré F, Moreau P, Campion L, Dupas B et al (2008) Investigation of FDG-PET/CT imaging to guide biopsies in the detection of histological transformation of indolent lymphoma. Haematologica 93:471–472

    Article  PubMed  Google Scholar 

  81. Atkinson W, Catana C, Abramson JS, Arabasz G, McDermott S et al (2016) Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients. Abdom Radiol (NY) 41:1338–1348

    Article  Google Scholar 

  82. Mena E, Lindenberg ML, Turkbey BI, Shih J, Logan J et al (2014) A pilot study of the value of 18F-fluoro-deoxy-thymidine PET/CT in predicting viable lymphoma in residual 18F-FDG avid masses after completion of therapy. Clin Nucl Med 39:874–881

    Article  PubMed  PubMed Central  Google Scholar 

  83. Minamimoto R, Fayad L, Advani R, Vose J, Macapinlac H et al (2016) Diffuse large B-cell lymphoma: prospective multicenter comparison of early interim FLT PET/CT versus FDG PET/CT with IHP,EORTC, Deauville, and PERCIST criteria for early therapeutic monitoring. Radiology 280:220–229

    Article  PubMed  Google Scholar 

  84. Dierickx D, Tousseyn T, Requile A, Verscuren R, Sagaert X et al (2013) The accuracy of positron emission tomography in the detection of posttransplant lymphoproliferative disorder. Haematologica 98:771–775

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ludwig H, Kumpan W, Sinzinger H (1982) Radiography and bone scintigraphy in multiple myeloma: a comparative analysis. Br J Radiol 55:173–181

    Article  PubMed  CAS  Google Scholar 

  86. Shortt CP, Gleeson TG, Breen KA, McHugh J, O’Connell MJ et al (2009) Whole-body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol 192:980–986

    Article  PubMed  Google Scholar 

  87. Lu YY, Chen JH, Lin WY, Liang JA, Wang HY et al (2012) FDG PET/CT for detecting intramedullary and extramedullary lesions in multiple myeloma. Clin Nucl Med 37:833–837

    Article  PubMed  Google Scholar 

  88. Durie BG, Waxman AD, D’Agnolo A, Williams CM (2002) Whole-body (18)F-FDG PET identifies high-risk myeloma. J Nucl Med 43:1457–1463

    PubMed  Google Scholar 

  89. Sachpekidis C, Goldschmidt H, Hose D, Pan L, Cheng C et al (2014) PET/CT studies of multiple myeloma using (18) F-FDG and (18) F-NaF: comparison of distribution patterns and tracers’ pharmacokinetics. Eur J Nucl Med Mol Imaging 41:1343–1353

    Article  PubMed  CAS  Google Scholar 

  90. Mihailovic J, Goldsmith SJ (2015) Multiple myeloma: 18F-FDG-PET/CT and diagnostic imaging. Semin Nucl Med 45:16–31

    Article  PubMed  Google Scholar 

  91. Harmon CM, Brown N (2015) Langerhans cell histiocytosis: a clinicopathologic review and molecular pathogenetic update. Arch Pathol Lab Med 139:1211–1214

    Article  PubMed  Google Scholar 

  92. Blum R, Seymour JF, Hicks RJ (2002) Role of 18FDG-positron emission tomography scanning in the management of histiocytosis. Leuk Lymphoma 43:2155–2157

    Article  PubMed  Google Scholar 

  93. Michallet AS, Sesques P, Rabe KG, Itti E, Tordot J et al (2016) An 18F-FDG-PET maximum standardized uptake value >10 represents a novel valid marker for discerning Richter’s syndrome. Leuk Lymphoma 57:1474–1477

    Article  PubMed  Google Scholar 

  94. Krug B, Crott R, Lonneux M, Baurain JF, Pirson AS et al (2008) Role of PET in the initial staging of cutaneous malignant melanoma: systematic review. Radiology 249:836–844

    Article  PubMed  Google Scholar 

  95. Gershenwald JE, Tseng CH, Thompson W, Mansfield PF, Lee JE et al (1998) Improved sentinel lymph node localization in patients with primary melanoma with the use of radiolabeled colloid. Surgery 124:203–210

    Article  PubMed  CAS  Google Scholar 

  96. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp

  97. Concannon R, Larcos GS, Veness M (2010) The impact of 18F-FDG PET-CT scanning for staging and management of Merkel cell carcinoma: results from Westmead Hospital, Sydney, Australia. J Am Acad Dermatol 62:76–84

    Article  PubMed  Google Scholar 

  98. Ibrahim SF, Ahronowitz I, McCalmont TH, Hernandez Pampaloni M, Ryan JL et al (2013) 18F-fluorodeoxyglucose positron emission tomography-computed tomography imaging in the management of Merkel cell carcinoma: a single-institution retrospective study. Dermatol Surg 39:1323–1333

    Article  PubMed  CAS  Google Scholar 

  99. Siva S, Byrne K, Seel M, Bressel M, Jacobs D et al (2013) 18F-FDG PET provides high-impact and powerful prognostic stratification in the staging of Merkel cell carcinoma: a 15-year institutional experience. J Nucl Med 54:1223–1229

    Article  PubMed  CAS  Google Scholar 

  100. Epstude M, Tornquist K, Riklin C, di Lenardo F, Winterhalder R et al (2013) Comparison of (18)F-FDG PET/CT and (68)Ga-DOTATATE PET/CT imaging in metastasized Merkel cell carcinoma. Clin Nucl Med 38:283–284

    Article  PubMed  Google Scholar 

  101. Beer K, Waibel J (2008) Recurrent basal cell carcinoma discovered using positron emission tomography (PET) scanning. J Drugs Dermatol 7:879–881

    PubMed  Google Scholar 

  102. Cho SB, Chung WG, Yun M, Lee JD, Lee MG et al (2005) Fluorodeoxyglucose positron emission tomography in cutaneous squamous cell carcinoma: retrospective analysis of 12 patients. Dermatol Surg 31:442–446

    Article  PubMed  CAS  Google Scholar 

  103. Nieder C, Grosu AL (2005) Response monitoring by positron emission tomography during radiotherapy of a squamous cell skin carcinoma. Onkologie 28:505–507

    PubMed  Google Scholar 

  104. Murakami R, Uozumi H, Hirai T, Nishimura R, Shiraishi S et al (2007) Impact of FDG-PET/CT imaging on nodal staging for head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 68:377–382

    Article  PubMed  Google Scholar 

  105. Yamazaki Y, Saitoh M, Notani K, Tei K, Totsuka Y et al (2008) Assessment of cervical lymph node metastases using FDG-PET in patients with head and neck cancer. Ann Nucl Med 22:177–184

    Article  PubMed  Google Scholar 

  106. Gil-Rendo A, Martínez-Regueira F, Zornoza G, García-Velloso MJ, Beorlegui C et al (2009) Association between [18F]fluorodeoxyglucose uptake and prognostic parameters in breast cancer. Br J Surg 96:166–170

    Article  PubMed  CAS  Google Scholar 

  107. Groheux D, Giacchetti S, Moretti J-L, Porcher R, Espié M et al (2011) Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging 38:426–435

    Article  PubMed  Google Scholar 

  108. Yoon HJ, Kang KW, Chun IK, Cho N, Im SA et al (2014) Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from 68Ga-RGD PET/CT and 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 41:1534–1543

    Article  PubMed  CAS  Google Scholar 

  109. Basu S, Chen W, Tchou J, Mavi A, Cermik T et al (2008) Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer 112:995–1000

    Article  PubMed  CAS  Google Scholar 

  110. Veronesi U, De Cicco C, Galimberti VE, Fernandez JR, Rotmensz N et al (2007) A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 18:473–478

    Article  PubMed  CAS  Google Scholar 

  111. Groheux D, Moretti J-L, Baillet G, Espie M, Giacchetti S et al (2008) Effect of 18F-FDG PET/CT imaging in patients with clinical stage II and III breast cancer. Int J Radiat Oncol Biol Phys 71:695–704

    Article  PubMed  Google Scholar 

  112. Segaert I, Mottaghy F, Ceyssens S, De Wever W, Stroobants S et al (2010) Additional value of PET-CT in staging of clinical stage IIB and III breast cancer. Breast J 16:617–624

    Article  PubMed  Google Scholar 

  113. Schilling K, Narayanan D, Kalinyak JE, The J, Velasquez MV et al (2011) Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging. Eur J Nucl Med Mol Imaging 38:23–36

    Article  PubMed  Google Scholar 

  114. Radan L, Ben-Haim S, Bar-Shalom R, Guralnik L, Israel O (2006) The role of FDG PET/CT in suspected recurrence of breast cancer. Cancer 107:2545–2551

    Article  PubMed  Google Scholar 

  115. Champion L, Brain E, Giraudet A-L, Le Stanc E, Wartski M et al (2011) Breast cancer recurrence diagnosis suspected on tumor marker rising: value of whole-body 18FDG-PET/CT imaging and impact on patient management. Cancer 117:1621–1629

    Article  PubMed  Google Scholar 

  116. Cuellar SL, Carter BW, Macapinlac HA, Ajani JA, Komaki R et al (2014) Clinical staging of patients with early esophageal adenocarcinoma: does FDG-PET/CT have a role? J Thorac Oncol 9:1202–1206

    Article  PubMed  CAS  Google Scholar 

  117. Räsänen JV, Sihvo EI, Knuuti MJ, Minn HR, Luostarinen ME et al (2003) Prospective analysis of accuracy of positron emission tomography, computed tomography, and endoscopic ultrasonography in staging of adenocarcinoma of the esophagus and the esophagogastric junction. Ann Surg Oncol 10:954–960

    Article  PubMed  Google Scholar 

  118. Kato H, Miyazaki T, Nakajima M, Fukuchi M, Manda R et al (2004) Value of positron emission tomography in the diagnosis of recurrent oesophageal carcinoma. Br J Surg 91:1004–1009

    Article  PubMed  CAS  Google Scholar 

  119. Wieder HA, Brücher BL, Zimmermann F, Becker K, Lordick F et al (2004) Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 22:900–908

    Article  PubMed  CAS  Google Scholar 

  120. Goense L, van Rossum PS, Reitsma JB, Lam MG, Meijer GJ et al (2015) Diagnostic performance of 18F-FDG PET and PET/CT for the detection of recurrent esophageal cancer after treatment with curative intent: a systematic review and meta-analysis. J Nucl Med 56:995–1002

    Article  PubMed  Google Scholar 

  121. Serrano OK, Love C, Goldman I, Huang K, Ng N, Et al (2016) The value of FDG-PET in the staging of gastric adenocarcinoma: a single institution retrospective review. J Surg Oncol 113:640–646

    Article  PubMed  Google Scholar 

  122. Yun M, Lim JS, Noh SH, Hyung WJ, Cheong JH et al (2005) Lymph node staging of gastric cancer using 18F-FDG PET: a comparison study with CT. J Nucl Med 46:1582–1588

    PubMed  Google Scholar 

  123. Ott K, Fink U, Becker K, Stahl A, Dittler HJ et al (2003) Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 21:4604–4610

    Article  PubMed  CAS  Google Scholar 

  124. Fong Y, Saldinger PF, Akhurst T, Macapinlac H, Yeung H et al (1999) Utility of 18F-FDG positron emission tomography scanning on selection of patients for resection of hepatic colorectal metastases. Am J Surg 178:282–287

    Article  PubMed  CAS  Google Scholar 

  125. Sahani DV, Kalva SP, Fischman AJ, Kadavigere R, Blake M et al (2005) Detection of liver metastases from adenocarcinoma of the colon and pancreas: comparison of mangafodipir trisodium-enhanced liver MRI and whole-body FDG PET. AJR Am J Roentgenol 185:239–246

    Article  PubMed  Google Scholar 

  126. Flanagan FL, Dehdashti F, Ogunbiyi OA, Siegel BA (1998) Utility of FDG PET for investigating unexplained plasma CEA elevation inpatients with colorectal cancer. Ann Surg 227:319–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Valk PE, Abella-Columna E, Haseman MK, Pounds TR, Tesar RD et al (1999) Whole-body PET imaging with F-18-fluorodeoxyglucose in management of recurrent colorectal cancer. Arch Surg 134:503–511

    Article  PubMed  CAS  Google Scholar 

  128. Yasuda S, Fujii H, Nakahara T, Nishumi N, Takahashi W et al (2001) 18F-FDG PET detection of colonic adenomas. J Nucl Med 42:989–992

    PubMed  CAS  Google Scholar 

  129. Koyama K, Okamura T, Kawabe J, Nakata B, Chung KH et al (2001) Diagnostic usefulness of FDG PET for pancreatic mass lesions. Ann Nucl Med 15:217–224

    Article  PubMed  CAS  Google Scholar 

  130. Bares R, Dohmen BM, Cremerius U, Fass J, Teusch M et al (1996) Results of positron emission tomography with fluorine-18 labeled fluorodeoxyglucose in differential diagnosis and staging of pancreatic carcinoma. Radiologe 36:435–440

    Article  PubMed  CAS  Google Scholar 

  131. Diederichs CG, Staib L, Vogel J, Glasbrenner B, Glatting G et al (2000) Values and limitations of 18F-fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas 20:109–116

    Article  PubMed  CAS  Google Scholar 

  132. Kauhanen SP, Komar G, Seppanen MP, Dean KI, Minn HR et al (2009) A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann Surg 250:957–963

    Article  PubMed  Google Scholar 

  133. Ruf J, Lopez Hänninen E, Oettle H, Plotkin M, Pelzer U et al (2005) Detection of recurrent pancreatic cancer: comparison of FDG-PET with CT/MRI. Pancreatology 5:266–272

    Article  PubMed  Google Scholar 

  134. Rose DM, Delbeke D, Beauchamp RD, Chapman WC, Sandler MP et al (1999) 18Fluorodeoxyglucose-positronemission tomography in the management of patients with suspected pancreatic cancer. Ann Surg 229:729–737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Sugiyama M, Sakahara H, Torizuka T, Kanno T, Nakamura F et al (2004) 18F-FDG PET in the detection of extrahepatic metastases from hepatocellular carcinoma. J Gastroenterol 39:961–968

    Article  PubMed  CAS  Google Scholar 

  136. Petrowsky H, Wildbrett P, Husarik DB, Hany TF, Tam S et al (2006) Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol 45:43–50

    Article  PubMed  Google Scholar 

  137. Anderson CD, Rice MH, Pinson CW, Chapman WC, Chari RS et al (2004) Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg 8:90–97

    Article  PubMed  Google Scholar 

  138. Goodfellow H, Viney Z, Hughes P, Rankin S, Rottenberg G et al (2014) Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int 114:389–395

    PubMed  CAS  Google Scholar 

  139. Chakraborty D, Bhattacharya A, Mete UK, Mittal BR (2013) Comparison of 18F fluoride PET/CT and 99mTc-MDP bone scan in the detection of skeletal metastases in urinary bladder carcinoma. Clin Nucl Med 38:616–621

    Article  PubMed  Google Scholar 

  140. Maurer T, Souvatzoglou M, Kubler H, Opercan K, Schmidt S et al (2012) Diagnostic efficacy of [11C]choline positron emission tomography/computed tomography compared with conventional computed tomography in lymph node staging of patients with bladder cancer prior to radical cystectomy. Eur Urol 61:1031–1038

    Article  PubMed  Google Scholar 

  141. Kang DE, White RL Jr, Zuger JH, Sasser HC, Teigland CM (2004) Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 171:1806–1809

    Article  PubMed  Google Scholar 

  142. Nakatani K, Nakamoto Y, Saga T, Higashi T, Togashi K (2011) The potential clinical value of FDG-PET for recurrent renal cell carcinoma. Eur J Radiol 79:29–35

    Article  PubMed  Google Scholar 

  143. Lin WC, Hung YC, Yeh LS, Kao CH, Yen RF et al (2003) Usefulness of 18F-fluorodeoxyglucose positron emission tomography to detect para-aortic lymph nodal metastasis in advanced cervical cancer with negative computed tomography findings. Gynecol Oncol 89:73–76

    Article  PubMed  Google Scholar 

  144. Sironi S, Buda A, Picchio M, Perego P, Moreni R et al (2006) Lymph node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT. Radiology 238:272–279

    Article  PubMed  Google Scholar 

  145. Kim SK, Choi HJ, Park SY, Lee HY, Seo SS et al (2009) Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer 45:2103–2109

    Article  PubMed  Google Scholar 

  146. Signorelli M, Guerra L, Buda A, Picchio M, Mangili G et al (2009) Role of the integrated FDG PET/CT in the surgical management of patients with high risk clinical early stage endometrial cancer: detection of pelvic nodal metastases. Gynecol Oncol 115:231–235

    Article  PubMed  Google Scholar 

  147. Picchio M, Mangili G, Samanes Gajate AM, De Marzi P, Spinapolice EG et al (2010) High-grade endometrial cancer: value of [18F]FDG PET/CT in preoperative staging. Nucl Med Commun 31:506–512

    PubMed  Google Scholar 

  148. Kitajima K, Murakami K, Yamasaki E, Hagiwara S, Fukasawa I et al (2008) Performance of FDG-PET/CT in the diagnosis of recurrent endometrial cancer. Ann Nucl Med 22:103–109

    Article  PubMed  Google Scholar 

  149. Risum S, Høgdall C, Loft A, Berthelsen AK, Høgdall E et al (2007) The diagnostic value of PET/CT for primary ovarian cancer—a prospective study. Gynecol Oncol 105:145–149

    Article  PubMed  Google Scholar 

  150. Nam EJ, Yun MJ, Oh YT, Kim JW, Kim JH et al (2010) Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecol Oncol 116:389–394

    Article  PubMed  Google Scholar 

  151. Chang WC, Hung YC, Kao CH, Yen RF, Shen YY et al (2002) Usefulness of whole body positron emission tomography (PET) with 18F-fluoro-2-deoxyglucose (FDG) to detect recurrent ovarian cancer based on asymptomatically elevated serum levels of tumor marker. Neoplasma 49:329–333

    PubMed  CAS  Google Scholar 

  152. Kim CK, Park BK, Choi JY, Kim BG, Han H (2007) Detection of recurrent ovarian cancer at MRI: comparison with integrated PET/CT. J Comput Assist Tomogr 31:868–875

    Article  PubMed  Google Scholar 

  153. Robertson NL, Hricak H, Sonoda Y, Sosa RE, Benz M et al (2016) The impact of FDG-PET/CT in the management of patients with vulvar and vaginal cancer. Gynecol Oncol 140:420–424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. European Association of Urology Guidelines on prostate cancer. uroweb.org [online], http://uroweb.org/wp-content/uploads/EAU-Guidelines-Prostate-Cancer-2015-v2.pdf

  155. Prostate cancer guideline for the management of clinically localized prostate. cancer: 2007 update. aua.org [online], http://www.auanet.org/common/pdf/education/clinical-guidance/Prostate-Cancer.pdf

  156. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  157. Oyama N, Akino H, Suzuki Y, Kanamaru H, Sadato N et al (1999) The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 29:623–629

    Article  PubMed  CAS  Google Scholar 

  158. Sung J, Espiritu JI, Segall GM, Terris MK (2003) Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer. BJU Int 92:24–27

    Article  PubMed  CAS  Google Scholar 

  159. Kao PF, Chou YH, Lai CW (2008) Diffuse FDG uptake in acute prostatitis. Clin Nucl Med 33:308–310

    Article  PubMed  Google Scholar 

  160. Lin KH, Chen YS, Hu G, Tsay DG, Peng NJ (2010) Chronic bacterial prostatitis detected by FDG PET/CT in a patient presented with fever of unknown origin. Clin Nucl Med 35:894–895

    Article  PubMed  Google Scholar 

  161. Hofer C, Laubenbacher C, Block T, Breul J, Hartung R et al (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36:31–35

    Article  PubMed  CAS  Google Scholar 

  162. Schwarz T, Seidl C, Schiemann M, Senekowitsch-Schmidtke R, Krause BJ (2016) Increased choline uptake in macrophages and prostate cancer cells does not allow for differentiation between benign and malignant prostate pathologies. Nucl Med Biol 43:355–359

    Article  PubMed  CAS  Google Scholar 

  163. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41:11–20

    Article  PubMed  CAS  Google Scholar 

  164. Uprimny C, Kroiss A, Nilica B, Buxbaum S, Decristoforo C et al (2015) (68)Ga-PSMA ligand PET versus (18)F-NaF PET: evaluation of response to (223)Ra therapy in a prostate cancer patient. Eur J Nucl Med Mol Imaging 42:362–363

    Article  PubMed  Google Scholar 

  165. Hope TA, Aggarwal R, Chee B, Tao D, Greene KL et al (2017) Impact of Ga-68 PSMA-11 PET on management in patients with biochemically recurrent prostate cancer. J Nucl Med 58(12):1956–1961. https://doi.org/10.2967/jnumed.117.192476

    Article  PubMed  Google Scholar 

  166. Ambrosini V, Zucchini G, Nicolini S, Berselli A, Nanni C et al (2014) 18F-FDG PET/CT impact on testicular tumours clinical management. Eur J Nucl Med Mol Imaging 41:668–673

    Article  PubMed  CAS  Google Scholar 

  167. De Santis M, Becherer A, Bokemeyer C, Stoiber F, Oechsle K et al (2004) 2-18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol 22:1034–1039

    Article  PubMed  Google Scholar 

  168. Cook GJ, Sohaib A, Huddart RA, Dearnaley DP, Horwich A et al (2015) The role of 18F-FDG PET/CT in the management of testicular cancers. Nucl Med Commun 36:702–708

    Article  PubMed  CAS  Google Scholar 

  169. Baum SH, Frühwald M, Rahbar K, Wessling J, Schober O et al (2011) Contribution of PET/CT to prediction of outcome in children and young adults with rhabdomyosarcoma. J Nucl Med 52:1535–1540

    Article  PubMed  CAS  Google Scholar 

  170. Völker T, Denecke T, Steffen I, Misch D, Schönberger S et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441

    Article  PubMed  Google Scholar 

  171. Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056

    Article  PubMed  CAS  Google Scholar 

  172. Van den Abbeele AD (2008) The lessons of GIST—PET and PET/CT: a new paradigm for imaging. Oncologist 2:8–13

    Article  Google Scholar 

  173. Suc A, Lumbroso J, Rubie H, Hattchouel JM, Boneu A et al (1996) Metastatic neuroblastoma in children older than one year: prognostic significance of the initial metaiodobenzylguanidine scan and proposal for a scoring system. Cancer 77:805–811

    Article  PubMed  CAS  Google Scholar 

  174. Paltiel HJ, Gelfand MJ, Elgazzar AH, Washburn LC, Harris RE et al (1994) Neural crest tumors: I123 MIBG imaging in children. Radiology 190:117–121

    Article  PubMed  CAS  Google Scholar 

  175. Gelfand MJ, Elgazzar AH, Kriss VM, Masters PR, Golsch GJ (1994) Iodine 123 MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med 35:1753–1757

    PubMed  CAS  Google Scholar 

  176. Sharp SE, Gelfand MJ, Shulkin BL (2011) Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med 41:345–353

    Article  PubMed  Google Scholar 

  177. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL (2009) 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 50:1237–1243

    Article  PubMed  Google Scholar 

  178. Giammarile F, Chiti A, Lassmann M, Brans B, Flux G (2008) EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging 35:1039–1047

    Article  PubMed  CAS  Google Scholar 

  179. Pelosof LC, Gerber DE (2010) Paraneoplastic syndromes: an approach to diagnosis and treatment. Mayo Clin Proc 85:838–854

    Article  PubMed  PubMed Central  Google Scholar 

  180. Sheikhbahaei S, Marcus CV, Fragomeni RS, Rowe SP, Javadi MS et al (2017) Whole-body (18)F-FDG PET and (18)F-FDG PET/CT in patients with suspected paraneoplastic syndrome: a systematic review and meta-analysis of diagnostic accuracy. J Nucl Med 58(7):1031–1036

    Article  PubMed  Google Scholar 

  181. Basu S, Alavi A (2008) Role of FDG-PET in the clinical management of paraneoplastic neurological syndrome: detection of the underlying malignancy and the brain PET-MRI correlates. Mol Imaging Biol 10:131–137

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elgazzar, A.H., Sarikaya, I. (2018). Oncology. In: Nuclear Medicine Companion. Springer, Cham. https://doi.org/10.1007/978-3-319-76156-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76156-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76155-8

  • Online ISBN: 978-3-319-76156-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics