Skip to main content

Morphotectonic and Orogenic Development of the Northern Andes of Colombia: A Low-Temperature Thermochronology Perspective

  • Chapter

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Landscapes in mountain belts evolve through complex feedback mechanisms between internal and external processes. Modern orogenic belts, such as the Andes, are the result of millions of years of continuing internal and external processes. Therefore, mountain ranges are rich repositories of geomorphic and tectonic information. Established techniques in low temperature thermochronology (LTTC), e.g., fission-track and (U-Th)/He dating, present novel opportunities to quantitatively explore key morphotectonic processes in the upper crust, e.g., the cooling of rocks as they move toward the Earth’s surface during exhumation, via erosion, normal faulting, and/or crustal thinning. We address the Late Mesozoic-Cenozoic morphotectonic and orogenic history of the Northern Andes of Colombia using detailed compilations and analysis of existing LTTC datasets, in an effort to define the spatial distribution, timing, and magnitude of the main orogenic phases in the region, while providing an up-to-date morphotectonic picture of the Northern Andes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use the term uplift (and other associated terminology) in the sense defined by England and Molnar (1990) as follows: Surface uplift is the displacement of the average elevation of the landscape with respect to mean sea level. Rock uplift is the net displacement of a rock parcel with respect to sea level. Rock uplift is equal to surface uplift under no-erosion and no-deposition conditions, i.e., where no exhumation/burial takes place. Exhumation implies the approximation of the rock parcel to the topographic surface. In that sense, exhumation (also referred to as denudation) can be defined as the difference between rock uplift and surface uplift. A topographic steady-state condition is then achieved when rock uplift and erosion proceed at the same rate to inhibit surface uplift.

  2. 2.

    In this contribution, the term relief is equivalent to topographic relief and refers to the difference between the highest and lowest point in a particular area. In that sense the Andean Region of Colombia is characterized by relief in excess of 5000 m, as the highest points in the Central Cordillera reach elevations close to 5.5 km, whereas the bottoms of valleys such as the Middle Cauca and Middle Magdalena are at ~500 m. Conversely, the Caribbean, (except for the Sierra Nevada de Santa Marta with peaks reaching elevations of more than 5.5 km) Amazonian, and Orinoquia regions possess low topographic relief, i.e., <200 m on average. Local and relative relief are more specific terms, indicating the difference in elevation measured over a specified area. Figure 11.7 illustrates differences in relative relief over the Northern Andes. (For more detail on these definitions, see Summerfield, 2001, and Montgomery 2003).

  3. 3.

    For details on the Romeral Shear Zone, see Chap. 5, Contribution No. 12, in this volume.

  4. 4.

    PLOCO, from its definition in Spanish as “Provincia Litosférica Oceánica Cretácica Occidental” (Gomez et al. 2015b).

  5. 5.

    PLCMG, from its definition in Spanish as “Provincia Litosférica Continental Mesoproterozoica Grenvilliana” (Gomez et al. 2015b).

  6. 6.

    For a detailed account of magmatism in the Northern Andes, see Chap. 4, contribution No. 5, this volume.

  7. 7.

    Worldwide, the SNSM (5750 m) ranks second in elevation, behind the much broader and longer Saint Elias Range (5959 m) in the USA (Alaska) and Canada.

  8. 8.

    For details on erosion/fluvial process in the Magdalena River, see Chap. 8, Contribution No. 17, this volume.

  9. 9.

    Although the nomenclature of orogenetic phases by van der Hammen refers to orogenetic events of continental scale (in the case of the Laramic) and to the gradual consolidation of the Andean topography, we opt to maintain the same terminology in order to avoid confusion. The chronology of some of these phases in van der Hammen (1961) correspond to the Eocene (Incaic) and Miocene (Quechua) in Peru (Mégard 1984).

  10. 10.

    To avoid confusion arising from the use of the terms uplift, exhumation, denudation, etc., please refer to the LTTC section of this contribution. We emphasize that LTTC techniques can be used through several approaches (vertical profiles, sample multiple dating, etc.) to constrain timing and rate(s) of cooling associated with erosional exhumation. When the term “uplift” is used to discuss LTTC datasets in various litho-structural domains of the Colombian Andes, we assume that “surface uplift” (i.e., topographic buildup) is the main trigger of erosional exhumation. In that regard, LTTC data is taken to yield only bulk erosion rates, such as the movement of a rock parcel toward the eroding topographic surface (i.e., exhumation). Therefore, LTTC does not constrain surface uplift with respect to a fixed frame of reference such as sea level. For a detailed discussion on these issues, see England and Molnar (1990), Brown and Summerfield (1997), and Reniers and Brandon (2006).

  11. 11.

    Instituto de Investigaciones en Estratigrafía (IIES) at Universidad de Caldas (Colombia), Grupo de Estudios Tectónicos (GET) at Universidad Nacional de Colombia (Medellín, Colombia), University of Florida at Gainesville (Florida, USA), University Grenoble Alpes (Grenoble, France), Agencia Nacional de Hidrocarburos-ANH (Colombia), Universidad EAFIT (Medellín, Colombia)

  12. 12.

    For a detailed location and genesis of plutonic masses in the Northern Andes, see Andean Magmatism, in this volume, Chap. 4, contribution No. 4, and/or Gomez et al. (2015a, b).

  13. 13.

    GET research group at Universidad Nacional de Colombia, unpublished datasets.

  14. 14.

    More detailed descriptions of the litho-structural characteristics of the Santander and Garzón Massifs are available in Chap. 2, Contribution No. 3 in this volume. Additional information on thermotectonic events for the Santander Massif, at deeper crustal levels and in relation to other litho-structural elements of the Maracaibo Block and the Venezuelan Andes, are addressed in Chap. 6 contribution No. 14 in this volume.

  15. 15.

    Further details on the Garzón Massif are found in Chap. 2, Contribution No. 2 of this volume.

  16. 16.

    For details on isolated massifs exhibiting Proterozoic and Paleozoic lithologies, see Chap. 2, Contribution No. 3 of this volume.

Abbreviations

AER:

Age-elevation relationship for LTTC data

AFT:

Apatite fission-track dating

A-PAZ:

Apatite partial annealing zone for fission tracks in FT dating LTTC

AHe:

Apatite uranium-thorium/helium dating

AP:

Antioqueño Plateau

CC:

Central Cordillera

CRFS:

Cauca-Romeral Fault System

EC:

Eastern Cordillera

FT:

Fission-track dating

GOF:

Goodness of fit in LTTC modeling

LA-ICP-MS:

Laser ablation inductively coupled plasma mass spectrometry

LTTC:

Low-temperature thermochronology

Ma:

Mega-annum

MTL:

Mean track length in fission-track analyses

NAB:

Northern Andes Block or NorAndean Block

PAZ:

Partial annealing zone for fission tracks in FT dating LTTC

PCB:

Panama-Chocó Block

PLOCO:

From its definition in Spanish as “Provincia Litosférica Oceánica Cretácica Occidental”

PLCMG:

From its definition in Spanish as “Provincia Litosférica Continental Mesoproterozoica Grenvilliana”

PRZ:

Partial retention zone for helium in (U-Th)/He dating LTTC

SNSM:

Sierra Nevada de Santa Marta

SNC:

Sierra Nevada del Cocuy

WC:

Western Cordillera

ZHe:

Zircon uranium-thorium/helium dating

ZFT:

Zircon fission-track dating

Zr-PAZ:

Zircon partial annealing zone for fission tracks in FT dating LTTC

References

  • Aalto R, Dunne T, Guyot JL (2006) Geomorphic controls on Andean denudation rates. J Geol 11:85–99

    Google Scholar 

  • Acosta J, Lonergan L, Coward M (2004) Oblique transpression in the western thrust front of the Colombian Eastern Cordillera. J South Am Earth Sci 17(3):181–194

    Google Scholar 

  • Ahnert F (1970) Functional relationships between denudation, relief, and uplift in large mid-latitude basins. Am J Sci 268:243–263

    Google Scholar 

  • Álvarez J (1983) Geología de la Cordillera Central y el occidente colombiano y petroquímica de los intrusivos granitoides Meso-Cenozoicos. Boletín Geológico de Ingeominas 26(2):1–175

    Google Scholar 

  • Amano K, Taira A (1992) Two-phase uplift of Higher Himalayas since 17 Ma. Geology 20(5):391–394

    Google Scholar 

  • Amaya S, Zuluaga CA, Bernet M (2017) New fission-track age constraints on the exhumation of the central Santander Massif: Implications for the tectonic evolution of the Northern Andes, Colombia. Lithos 282:388–402

    Google Scholar 

  • Amaya-Ferreira S (2016) Termocronología y Geocronología Del Basamento Metamórfico del Macizo de Santander, Departamento de Santander, Colombia. [PhD Thesis]. Universidad Nacional de Colombia, Bogotá p 172

    Google Scholar 

  • Anderson VJ (2015) Uplift and exhumation of the Eastern Cordillera of Colombia and its interactions with climate [PhD Thesis]. University of Texas, Austin USA, p 185

    Google Scholar 

  • Anderson VJ, Saylor JE, Shanahan TM, Horton BK (2015) Paleoelevation records from lipid biomarkers: application to the tropical Andes. Geol Soc Am Bull 127(11–12):1604–1616

    Google Scholar 

  • Anderson VJ, Horton BK, Saylor JE, Mora A, Tesón E, Breecker DO, Ketcham RA (2016) Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. Geosphere 12(4):1235–1256

    Google Scholar 

  • Andriessen PAM, Helmens KF, Hooghiemstra H, Riezebos PA, van der Hammen T (1993) Absolute chronology of the PlioceneQuaternary sediment sequence of the Bogota area, Colombia. Quat Sci Rev 12:483–501

    Google Scholar 

  • Arancibia G, Matthews SJ, De Arce CP (2006) K-Ar and Ar-40/Ar-39 geochronology of supergene processes in the Atacama Desert, Northern Chile: tectonic and climatic relations. J Geol Soc 163:107–118

    Google Scholar 

  • Arias LA (1995) El relieve de la zona central de Antioquia: un palimpsesto de eventos tectónicos y climáticos. Revista Faculta de Ingeniería Universidad de Antioquia 10:9–24

    Google Scholar 

  • Arias L (1996) Altiplanos y cañones en Antioquia: una mirada genética. Revista Facultad de Ingeniería Universidad de Antioquia 8(2):84–96

    Google Scholar 

  • Aspden J, McCourt WJ (1986) A Mesozoic oceanic terrane in the central Andes of Colombia. Geology 14:415–418

    Google Scholar 

  • Aspden JA, McCourt WJ, Brook M (1987) Geometrical control of subduction-related magmatism – the Mesozoic and Cenozoic plutonic history of western Colombia. J Geol Soc Lond 144:893–905

    Google Scholar 

  • Avouac JP, Burov EB (1996) Erosion as a driving mechanism of intracontinental mountain growth. J Geophys Res 17:747–717, 769

    Google Scholar 

  • Bakioglu KB (2014) Garzón Massif basement tectonics: a geopyhysical study. Upper Magdalena Valley, Colombia: University of South Carolina

    Google Scholar 

  • Barbosa-Espitia AA, Restrepo-Moreno SA, Pardo A, Osorio J, Ochoa D (2013) Uplift and exhumation of the southernmost segment of the Western Cordillera (Colombia) and development of the neighboring Tumaco Basin, in Proceedings 2013 GSA Annual Meeting 125th Anniversary of GSA, Denver CO USA, 2013, vol 45, Geological Society of America Abstracts with Programs, p 542

    Google Scholar 

  • Barnes JB, Ehlers TA, McQuarrie N, O’Sullivan PB, Pelletier JD (2006) Eocene to recent variations in erosion across the central Andean foldthrust belt, northern Bolivia: implications for plateau evolution. Earth Planet Sci Lett 248(1–2):118–133

    Google Scholar 

  • Barrero D, Pardo A, Vargas CA, Martinez JI (2007) Colombian sedimentary basins: nomenclature, boundaries and petroleum geology, a new proposal. Agencia Nacional de Hidrocarburos – A.N.H.

    Google Scholar 

  • Bayona G, Cortés M, Jaramillo C, Ojeda G, Aristizabal JJ, Reyes-Harker A (2008) An integrated analysis of an orogen–sedimentary basin pair: Latest Cretaceous–Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. GSA Bull 120(9–10):1171–1197

    Google Scholar 

  • Bayona G, Montes C, Cardona A, Jaramillo C, Ojeda G, Valencia V (2011) Intraplate subsidence and basin filling adjacent to an oceanic arc–continental collision; a case from the Southern Caribbean–South America plate margin. Basin Res 23:403–422

    Google Scholar 

  • Bayona G, Cardona A, Jaramillo C, Mora A, Montes C, Valencia V, Ayala C, Montenegro O, Ibañez-Mejia M (2012) Early Paleogene magmatism in the northern Andes: insights on the effects of Oceanic Plateau–continent convergence. Earth Planet Sci Lett 331–332:97–111

    Google Scholar 

  • Beaumont C, Fullsack P, Hamilton J (1992) Erosional control of active compressional orogens. In: McClay KR (ed) Thrust tectonics. Chapman and Hall, New York, pp 1–18

    Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen M, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414(6865):738–742

    Google Scholar 

  • Benjamin MT, Johnson NM, Naeser CW (1987) Recent rapid uplift in the Bolivian Andes: evidence from fission track dating. Geology 15:680–683

    Google Scholar 

  • Bernet M (2009) A field-based estimate of the zircon fission-track closure temperature. Chem Geol 259:181–189

    Google Scholar 

  • Bernet M, Spiegel C (2004) Detrital thermochronology—provenance analysis, exhumation, and landscape evolution of mountain belts. Geological Society of AmericaSpecial Paper 378. Geological Society of America, Boulder

    Google Scholar 

  • Berry EW (1919) Fossil plants from Bolivia and their bearing upon the age of uplift of the eastern Andes. US Government Printing Office

    Google Scholar 

  • Bierman PR (2004) Rock to sediment – slope to sea with Be-10 – rates of landscape change. Annu Rev Earth Planet Sci 32:215–255

    Google Scholar 

  • Bird P (1988) Formation of the Rocky Mountains, western United States – a continuum computer model. Science 239(4847):1501–1507

    Google Scholar 

  • Bishop P (2007) Long-term landscape evolution: linking tectonics and surface processes. Earth Surf Process Landf 32(3):329–365

    Google Scholar 

  • Bonini WE, Hargraves RB, Shagam R (1984) The Caribbean-South American plate boundary and regional tectonics. Geological Society of America

    Google Scholar 

  • Botero G (1963) Contribución al conocimiento de la geología de la zona central de Antioquia. Anales Facultad de Minas Medellín 57:7–101

    Google Scholar 

  • Branket Y et al (2012) Andean deformation and rift inversion, eastern edge of Cordillera Oriental (Guateque–Medina area), Colombia. J South Am Earth Sci 15:391–407

    Google Scholar 

  • Braun J (2003) Pecube: a new finite element code to solve the heat transport equation in three dimensions in the Earth’s crust including the effects of a time-varying, finite amplitude surface topography. Comput Geosci 29:787–794

    Google Scholar 

  • Brown RW, Summerfield MA (1997) Some uncertainties in the derivation of rates of denudation from thermochronologic data. Earth Surf Process Landf 22:239–248

    Google Scholar 

  • Brown RW, Summerfield MA, Gleadow AJW (1994) Apatite fission track analysis: its potential for the estimation of denudation rates and implications for models of long-term landscape development. In: Kirby MJ (ed) Process models and theoretical geomorphology. Willey, Chichester, pp 23–53

    Google Scholar 

  • Buchs DM, Arculus RJ, Baumgartner PO, Baumgartner-Mora C, Ulianov A (2010) Late Cretaceous arc development on the SW margin of the Caribbean Plate: insights from the Golfito, Costa Rica, and Azuero, Panama, complexes. Geochem Geophys Geosyst 11(7):1–35

    Google Scholar 

  • Burbank DW, Anderson RS (2011) Tectonic geomorphology. Wiley, Chichester UK, 460 p

    Google Scholar 

  • Burbank DW, Pinter N (1999) Landscape evolution: the interactions of tectonics and surface processes. Basin Res 11:1–6

    Google Scholar 

  • Burbank DW, Derry LA, Lanord CF (1993) Reduced Himalayan sediment production 8 Ma ago despite an intensified monsoon. Nature 364:48–50

    Google Scholar 

  • Burke K, Cooper C, Dewey JF, Mann P, Pindell JL (1984) Caribbean tectonics and relative plate motions. Geol Soc Am Mem 162:31–64

    Google Scholar 

  • Bustamante C, Cardona A, Bayona G, Mora AR, Valencia V, Gehrels GE, Vervoort J (2010) U-Pb LA-ICP-MS geochronology and regional correlation of Middle Jurassic intrusive rocks from the Garzón Massif, Upper Magdalena Valley and Central Cordillera, southern Colombia. Boletin de Geologia 32:93–109

    Google Scholar 

  • Bustamante C, Archanjo CJ, Cardona A, Vervoort JD (2016) Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: a record of long-term arc maturity. Geol Soc Am Bull 128(11–12):1762–1779

    Google Scholar 

  • Camargo S (2014) Estructura litosférica asociada a la Sierra Nevada de Santa Marta a partir de datos de gravimetría, magnetometría y sismología. In: Proceedings Latin-American and Caribbean Seismological Commision Bogotá Colombia, Volume Poster session, LACSC

    Google Scholar 

  • Cardona A, Valencia VA, Bayona G, Duque J, Ducea M, Gehrels G, Jaramillo C, Montes C, Ojeda G, Ruiz J (2010) Early-subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia: Terra Nova 23(1):26–34

    Google Scholar 

  • Cardona A, Valencia V, Weber M, Duque J, Montes C, Ojeda G, Reiners P, Domanik K, Nicolescu S, Villagomez D (2011) Transient Cenozoic tectonic stages in the southern margin of the Caribbean plate: U-Th/He thermochronological constraints from Eocene plutonic rocks in the Santa Marta massif and Serranía de Jarara, northern Colombia. Geologica Acta 9(3–4):445–466

    Google Scholar 

  • Cardona-Molina A, Cordani UG, MacDonald WD (2006) Tectonic correlations of pre-Mesozoic crust from the northern termination of the Colombian Andes, Caribbean region. J South Am Earth Sci 21(4):337–354

    Google Scholar 

  • Carrapa B (2010) Resolving tectonic problems by dating detrital minerals. Geology 38(2):191–192

    Google Scholar 

  • Case JE, Duran LG, Lopez A, Moore WR (1971) Tectonic Investigations in Western Colombia and Eastern Panama. GSA Bull 82(10):2685–2712

    Google Scholar 

  • Cediel F, Shaw R, Caceres C (2003) Tectonic assembly of the northern Andean Block. In: Bartolini C, Buffler R, Blickwede J (eds) The circum-gulf of Mexico and Caribbean: hydrocarbon habitats, basin formation and plate tectonics, v. 79. AAPG Memoir, Tulsa, pp 815–848

    Google Scholar 

  • Cediel F, Restrepo I, Marín-Cerón MI, Duque-Caro H, Cuartas C, Mora C, Montenegro G, García E, Tovar D, Muñoz G (2009) Geology and Hydrocarbon Potential, Atrato and San Juan Basins, Chocó (Panamá) Arc. Tumaco Basin (Pacific Realm), Colombia, Medellín, Colombia, Fondo Editorial Universidad EAFIT, p 172

    Google Scholar 

  • Cediel F, Leal-Mejia H, Shaw R, Melgarego J, Restrepo-Pace P (2011) Petroleum geology of Colombia: regional geology of Colombia. Fondo Editorial U. Eafit, Ed 1:220

    Google Scholar 

  • Chew DM, Donelick RA (2012) Combined apatite fission track and U-Pb dating by LA-ICP-MS and its application in apatite provenance analysis. Quantitative mineralogy and microanalysis of sediments and sedimentary rocks: Mineralogical Association of Canada Short Course, 42:219–247

    Google Scholar 

  • Chicangana G (2005) The Romeral fault system: a shear and deformed extinct subduction zone between oceanic and continental lithospheres in northwestern South America. Earth Sci Res J 9(1):50–64

    Google Scholar 

  • Chorowicz J, Chotin P, Guillande R (1996) The Garzon fault: active southwestern boundary of the Caribbean plate in Colombia. Geologische Rundschau 85(1):172–179

    Google Scholar 

  • Clift PD (2010) Enhanced global continental erosion and exhumation driven by Oligo-Miocene climate change. Geophys Res Lett 37:1–6

    Google Scholar 

  • Coates AG, Stallard RF (2013) How old is the Isthmus of Panama? Bull Mar Sci 89(4):801–813

    Google Scholar 

  • Coates AG, Collins LS, Aury M-P, Berggren WA (2004) The geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. GSA Bull 116(11/12):1327–1344

    Google Scholar 

  • Cochrane R (2013) U-Pb thermochronology, geochronology and geochemistry of NW South America: rift to drift transition, active margin dynamics and implications for the volume balance of continents. University of Geneva

    Google Scholar 

  • Colmenares F (2007) Evolución Geohistorica de la Sierra Nevada de Santa Marta. INGEOMINAS, Bogotá, p 397

    Google Scholar 

  • Colmenares L, Zoback MD (2003) Stress field and seismotectonics of northern South America. Geology 31(8):721–724

    Google Scholar 

  • Coltorti M, Ollier CF (1999) The significance of high planation surfaces in the Andes of Ecuador. In: Smith BJ, Whalley WB, Warke PA (eds) Uplift, erosion and stability: perspectives on long-term landscape development, vol Volume 162. Geological Society, London, pp 239–253

    Google Scholar 

  • Coltorti M, Ollier CD (2000) Geomorphic and tectonic evolution of the Ecuadorian Andes. Geomorphology 32(1–2):1–19

    Google Scholar 

  • Copeland P, Harrison TM, Heizler MT (1990) 40Ar/39Ar singlecrystal dating of detrital muscovite and K-feldspar from Leg 116, southern Bengal Fan: implications for the uplift and erosion of the Himalayas. Proc Ocean Drill Progr Sci 116:93–114

    Google Scholar 

  • Correa I, Silva JC (1999) Estratigrafía y Petrografía del Miembro Superior de la Formación Amagá en la Sección El Cinco-Venecia-Quebrada La Sucia. Venecia, Antoquia, BSc: Universidad EAFIT, p 47

    Google Scholar 

  • Cortes M, Angelier J (2005) Current states of stress in the Northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics 403:29–58

    Google Scholar 

  • Cortés M, Angelier J, Colletta B (2005) Paleostress evolution of the northern Andes (Eastern Cordillera of Colombia): Implications on plate kinematics of the South Caribbean region. Tectonics 24(1): 1-27

    Google Scholar 

  • Cortés M, Colletta B, Angelier J (2006) Structure and tectonics of the central segment of the Eastern Cordillera of Colombia. J South Am Earth Sci 21(4):437–465

    Google Scholar 

  • Coughlin TJ, O’Sullivan P, Kohn BP, Holcombe RJ (1998) Apatite fission-track thermochronology of the Sierras Pampeanas, central western Argentina: implications for the mechanism of plateau uplift in the Andes. Geology 26(11):999–1002

    Google Scholar 

  • Cross TA, Pilger RH (1982) Controls of subduction geometry, location of magmatic arcs, and tectonics of arc and back-arc regions. Geol Soc Am Bull 93(6):545–562

    Google Scholar 

  • Crowhurst PV, Green PF, Kamp PJJ (2002) Appraisal of (U-Th)/He apatite thermochronology as a thermal history tool for hydrocarbon exploration: an example from the Taranaki Basin, New Zealand. AAPG Bull 86(10):1801–1819

    Google Scholar 

  • Dalziel I (1986) Collision and Cordilleran orogenesis: an Andean perspective. Geol Soc (London, Special Publications) 19(1):389–404

    Google Scholar 

  • Davis WM (1899) The geographical cycle. Geogr J 14:481–504

    Google Scholar 

  • Davis WM (1922) Peneplains and the geographical cycle. Geol Soc Am Bull 23:587–598

    Google Scholar 

  • Dengo CA, Covey MC (1993) Structure of the Eastern Cordillera of Colombia: implications for trap styles and regional tectonics. AAPG Bull 77(8):1315–1337

    Google Scholar 

  • Dewey JF, Bird JM (1970) Plate tectonics and geosynclines. Tectonophysics 10(5–6):625–638

    Google Scholar 

  • Dickinson WR, Gehrels GE (2008) U-Pb ages of detrital zircons in relation to paleogeography: triassic paleodrainage networks and sediment dispersal across southwest Laurentia. J Sediment Res 78(11–12):745–764

    Google Scholar 

  • Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics II: crystallographic orientation effects. Am Mineral 84:1224–1234

    Google Scholar 

  • Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations, and applications, Reviews in mineralogy and geochemistry, vol Volume 58. Chantilly, MSA, pp 49–94

    Google Scholar 

  • Douglas I (1967) Man, vegetation and the sediment yield of rivers. Nature 215:925–928

    Google Scholar 

  • Duddy IR, Green PF, Laslett GM (1988) Thermal annealing of fission tracks in apatite 3. Variable temperature behavior. Chem Geol 73:25–38

    Google Scholar 

  • Dumitru TA, Gans PB, Foster DA, Miller EL (1991) Refrigeration of the western Cordilleran lithosphere during Laramide shallow-angle subduction. Geology 19(11):1145–1148

    Google Scholar 

  • Duque-Caro H (1990a) The Choco Block in the northwestern corner of South America: structural, tectonostratigraphic and paleogeographic implications. J South Am Earth Sci 3(1):71–84

    Google Scholar 

  • Duque-Caro H. (1990b) Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77(3-4):203–234

    Google Scholar 

  • Ego F, Sébrier M, Yepes H (1995) Is the Cauca-Patia and Romeral fault system left or right lateral? Geophys Res Lett 22(1):33–36

    Google Scholar 

  • Ehlers TA, Farley KA (2003) Apatite (U-Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett 206:1–14

    Google Scholar 

  • Ehlers TA, Poulsen CJ (2009) Influence of Andean uplift on climate and paleoaltimetry estimates. Earth Planet Sci Lett 281:238–248

    Google Scholar 

  • England P, Molnar P (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18(12):1173–1177

    Google Scholar 

  • English JM, Johnston ST (2004) The Laramide orogeny: what were the driving forces? Int Geol Rev 46(9):833–838

    Google Scholar 

  • Espurt N, Baby P, Brusset SMR, Hermoza W, Barbarand J (2010) The Nazca Ridge and uplift of the Fitzcarrald Arch: implications for regional geology in northern South America. In: Hoorn C, Wesselingh FP (eds) Amazonia, landscape and species evolution: a look into the past. Wiley-Blackwell, London, p 464

    Google Scholar 

  • Etayo-Serna F (1986) Mapa de Terrenos Geológicos de Colombia, Publicación Geológica Especial INGEOMINAS, vol 14. INGEOMINAS, Bogotá, pp 1–235

    Google Scholar 

  • Farley KA (2000) Helium diffusion from apatite: general behavior as illustrated by Durango Fuorapatite. J Geophys Res 105:2903–2914

    Google Scholar 

  • Farley KA (2002) (U-Th)/He dating: techniques, calibrations, and applications. Rev Miner Geochem 47:819–844

    Google Scholar 

  • Farley KA, Stockli DF (2002) (U-Th)/He dating of phosphates: apatite, monazite, and xenotime. Rev Miner Geochem 48:559–577

    Google Scholar 

  • Farris DW, Restrepo-Moreno SA, Jaramillo C, Bayona G, Montes C, Cardona A, Reiners P, Mora A, Speakman RJ, Glasscock MD (2011) Evolution of the Panamanian Isthmus. Geology 39(11):1007–1010

    Google Scholar 

  • Feininger T, Botero G (1982) The Antioquian Batholith, Colombia, Bogotá, Publicación Geológica Especial Ingeominas, Publicaciones Geológicas Especiales, pp 1–50

    Google Scholar 

  • Feininger T, Barrero D, Castro N (1972) Geología de parte de los departamentos de Antioquia y Caldas (Sub-zona II-B). Boletín Geológico Ingeominas 20(2):1–173

    Google Scholar 

  • Fitzgerald PG (1994) Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica. Tectonics 13(4):818–836

    Google Scholar 

  • Flowers RM, Kelley SA (2011) Interpreting data dispersion and “inverted” dates in apatite (U–Th)/He and fission-track datasets: an example from the US midcontinent. Geochimica et Cosmochimica Acta 75(18):5169–5186

    Google Scholar 

  • Flowers RM, Wernicke P, Farley KA (2008) Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry. GSA Bull 120(5/6):571–587

    Google Scholar 

  • Forero A (1990) The basement of the Eastern Cordillera, Colombia: an allochthonous terrane in northwestern South America. J South Am Earth Sci 3:141–151

    Google Scholar 

  • Foster DA, Gleadow AJW (1996) Structural framework and denudation history of the flanks of the Kenya and Anza Rifts, East Africa. Tectonics 15(2):258–271

    Google Scholar 

  • Foster DA, Gleadow AJW, Mortimer G (1994) Rapid Pliocene exhumation in the Karakoram (Pakistan) revealed by fission-track thermochronology of the K2 gneiss. Geology 22:19–22

    Google Scholar 

  • Galbraith R (2005) Statistics for fission track analysis. Chapman & Hall/CRC, Interdisciplinary Statistics, Boca Raton, p 240

    Google Scholar 

  • Gallagher K (2013) QTQt User Guide v 5

    Google Scholar 

  • Gallagher K, Brown RW, Johnson C (1998) Geological applications of fission-track analysis. Ann Rev Earth Planet Sci 26:519–572

    Google Scholar 

  • Gallagher K, Stephenson J, Brown R, Holmes C, Ballester P (2005a) Exploiting 3D spatial sampling in inverse modeling of thermochronologic data. Rev Mineral Geochem 48:375–387

    Google Scholar 

  • Gallagher K, Stephenson J, Brown R, Holmes C, Fitzgerald P (2005b) Low temperature thermochronology and modeling strategies for multiple samples 1: vertical profiles. Earth Planet Sci Lett 237:193–208

    Google Scholar 

  • Gansser A (1955) Ein Beitrag zur Geologie und Petrographie der Sierra Nevada de Santa Marta (Kolumbien, Sudamerika). Schweizerische Mineralogische und Petrographische Mitteilungen 35(2):209–279

    Google Scholar 

  • Gansser A (1973) Facts and theories on the Andes Twenty-sixth William Smith Lecture. J Geol Soc 129(2):93–131

    Google Scholar 

  • Garzon-Varon F (2012) Modelamiento estructural de la zona límite entre la Microplaca de Panamá y el Bloque Norandino a partir de la interpretación de imágenes de radar, cartografía geológica, anomalías de campos potenciales y líneas sísmicas. MSc Universidad Nacional de Colombia, 102 p

    Google Scholar 

  • Gehrels G (2012) Detrital zircon U-Pb geochronology: current methods and new opportunities. In: Busby C, Azor A (ed) Tectonics of sedimentary basins: Recent advances. Willey, pp 45–62.

    Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Sci Letters, 249(1-2):47–61

    Google Scholar 

  • Gerya TV, Fossati D, Cantieni C, Seward D (2009) Dynamic effects of aseismic ridge subduction: numerical modelling. Europ J Mineral 21(3):649–661

    Google Scholar 

  • Ghosh P, Garzione CN, Eiler JM (2006) Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science 311:511–514

    Google Scholar 

  • Gleadow AJW (1981) Fission track dating methods: What are the real alternatives?. Nucl Tracks Radiat Meas 5:3–14

    Google Scholar 

  • Gleadow AJW, Brown RW (1999) Fission track thermochronology and the long-term denudational response to tectonics. In: Summerfield MA (ed) Geomorphology and global tectonics. Wiley, Chichester, pp 57–75

    Google Scholar 

  • Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the transantarctic mountains: new evidence from fission track dating of basement apatites in the dry valleys area, southern Victoria Land. Earth Planet Sci Lett 82:1–14

    Google Scholar 

  • Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib Miner Petrol 94:405–415

    Google Scholar 

  • Gleadow AJW, Belton DX, Kohn BP, Brown RW (2002) Fission track dating of phosphate minerals and the thermochronology of apatite. Rev Mineral Geochem 48:579–630

    Google Scholar 

  • Goldsmith R, Marvina R, Mehnert HH (1971) Radiometric ages in the Santander massif, eastern Cordillera, Colombian Andes. US Geol Surv Prof Pap 750:D44–D49

    Google Scholar 

  • Gomez E (2001) Tectonic controls on the Late Cretaceous to Cenozoic sedimentary fill of the Middle Magdalena Valley Basin, Eastern Cordillera and Llanos Basin, Colombia [Ph.D] Cornell University, p 619

    Google Scholar 

  • Gomez E, Jordan TE, Allmendinger RW, Hegarty K, Kelley S (2005a) Syntectonic Cenozoic sedimentation in the northern middle Magdalena Valley Basin of Colombia and implications for exhumation of the Northern Andes. Geol Soc Am Bull 117(5–6):547–569

    Google Scholar 

  • Gomez E, Jordan TE, Allmendinger RW, Cardozo N (2005b) Development of the Colombian foreland-basin system as a consequence of the diachronous exhumation of the northern Andes. Geol Soc Am Bull 117(9):1272–1292

    Google Scholar 

  • Gomez J, Montes NE, Alcárcel FA, Ceballos JA (2015a) Catálogo de dataciones radiométricas de Colombia en ArcGIS y Google Earth. In: Gomez J, Almanza MF (eds) Compilando la geología de Colombia: Una visión a 2015, vol Volume 33. Servicio Geológico Colombiano, Bogotá, pp 63–419

    Google Scholar 

  • Gomez J, Nivia Á, Montes NE, Almanza MF, Alcárcel F, Madrid CA (2015b) Notas explicativas: Mapa Geológico de Colombia, Bogotá, Servicio Geológico Colombiano, Compilando la geología de Colombia: Una visión a 2015, v. Publicaciones Geológicas Especiales, pp 35–60

    Google Scholar 

  • González H, Londoño AC (2002a) Catálogo de las unidades litoestratigráficas de Colombia, Monzodiorita de Farallones (Batolito de Farallones) Nmdf: INGEOMINAS

    Google Scholar 

  • González H, Londoño AC (2002b) Catálogo de las unidades litoestratigráficas de Colombia, Monzodiorita de la Horqueta (Stock de La Horqueta) Nmdh, Cordillera Occidental Departamento de Antioquia: INGEOMINAS

    Google Scholar 

  • González H, Londoño AC (2002c) Catálogo de las unidades litoestratigráficas de Colombia, Tonalita de Tatamá (N1tt) Cordillera Occidental Departamento del Chocó: INGEOMINAS

    Google Scholar 

  • Goudie AS (1995) The changing earth: rates of geomorphological processes. Wiley-Blackwell, New Jersey p 352

    Google Scholar 

  • Green PF (1981) A new look at statistics in fission track dating. Nuclear Tracks 5(1–2):77–86

    Google Scholar 

  • Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF (1989) Thermal annealing of fission tracks in apatite 4. Quantitative modeling techniques and extension to geological time scales. Chem Geol 79:155–182

    Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the central and northern Andes: a review. GSA Bull 112:1091–1105

    Google Scholar 

  • Grosse E (1926) El Terciario Carbonífero de Antioquia. D. Reimer-E. Vohsen, Berlin, p 361

    Google Scholar 

  • Grujic D, Coutand I, Bookhagen B, Bonnet S, Blythe A, Duncan C (2006) Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas. Geology 34(10):801–804

    Google Scholar 

  • Grujic D, Warren CJ, Wooden JL (2011) Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere 3(5):346–366

    Google Scholar 

  • Gubbels T, Isacks B, Farrar E (1993) High-level surfaces, plateau uplift, and foreland development, Bolivian central Andes. Geology 21(8):695–698

    Google Scholar 

  • Gunnell Y (1998) Present, past and potential denudation rates: is there a link? Tentative evidence from fission-track data, river sediment loads and terrain analysis in the South Indian shield. Geomorphology 25:135–153

    Google Scholar 

  • Gutscher MA, Malavieille J, Lallemand S, Collot J-Y (1999) Tectonic segmentation of the northern Andean margin: impact of the Carnegie Ridge collision. Earth Planet Sci Lett 168:255–270

    Google Scholar 

  • Hack JT (1976) Dynamic equilibrium and landscape evolution. In: Melborn W, Flernal R (eds) Theories of landforms development. State University of New York Publications in Geomorphology, Binghamton, pp 87–102

    Google Scholar 

  • Harris SE, Mix AC (2002) Climate and tectonic influences on continental erosion of tropical South America, 0-13 Ma. Geology 30(5):447–450

    Google Scholar 

  • Harrison TM, Copeland P, Hall SA, Quade J, Burner S, Ojha TP, Kidd WSF (1993) Isotopic preservation of Himalayan/Tibetan uplift, denudation, and climatic histories of two molasse deposits. J Geol 1001(2):157–175

    Google Scholar 

  • Hartley A J (2003) Andean uplift and climate change. J Geol Soc Lond 160:7–10

    Google Scholar 

  • Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford AJ (2004) Apatite fission-track chronometry using laser ablation ICP-MS. Chem Geol 207:135–145

    Google Scholar 

  • Heimsath AM (2006) Eroding the land: Steady-state and stochastic rates and processes through a cosmogenic lens. Geol Soc Am Spec Pap 415:111–129

    Google Scholar 

  • Hengl T, Reuter HI (eds) (2008) Geomorphometry: Concepts, Software, Applications. Developments in Soil Science, 33, Elsevier, p 772

    Google Scholar 

  • Herman F, Seward D, Valla PG, Carter A, Kohn B, Willett SD, Ehlers TA (2013) Worldwide acceleration of mountain erosion under a cooling climate. Nature 504(7480):423

    Google Scholar 

  • Hetzel R, Dunkl I, Haider V, Strobl M, von Eynatten H, Ding L, Frei D (2011) Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology 39(10):983–986

    Google Scholar 

  • Holmes A. (1965). Principles of Physical Geology. Revised Edition. Nelson.

    Google Scholar 

  • Hooghiemstra H (1989) Quaternary and Upper-Pliocene glaciations and forest development in the Tropical Andes: evidence from a long high-resolution pollen record from the sedimentary basin of Bogota, Colombia. Palaeogeogr Palaeoclimatol Palaeoecol 72:11–26

    Google Scholar 

  • Hooghiemstra H, Wijninga VM, Cleef AM (2006) The paleobotanical record of Colombia: implications for biogeography and biodiversity. Ann Missouri Bot Gard 93(2):297

    Google Scholar 

  • Hooke RL (2000) On the history of humans as geomorphic agents. Geology 28(9):843–846

    Google Scholar 

  • Hoorn C, Flantua S (2015) An early start for the Panama land bridge. Science 348(6231):186–187

    Google Scholar 

  • Hoorn C, Guerrero J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23(3):237–240

    Google Scholar 

  • Hoorn C, Wesselingh FP, Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927. https://doi.org/10.1126/science.1194585

    Article  Google Scholar 

  • Horton BK, Parra M, Saylor JE, Nie J, Mora A, Torres V, Stockli DF, Strecker MR (2010a) Resolving uplift of the northern Andes using detrital zircon age signatures. GSA Today 20(7):4–10

    Google Scholar 

  • Horton BK, Saylor JE, Nie J, Mora A, Parra M, Reyes-Harker A, Stockli DF (2010b) Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages. Eastern Cordillera, Colombia GSA Bulletin

    Google Scholar 

  • House MA, Wernicke BP, Farley KA (1998) Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages. Nature 396:66–69

    Google Scholar 

  • House M, Kohn BP, Farley KA, Raza A (2002) Evaluating thermal history models for the Otway Basin, southeastern Australia, using (U-Th)/He and fission-track data from borehole apatites. Tectonophysics 349(1–4):277–295

    Google Scholar 

  • Hurford AJ, Green PF (1983) The zeta age calibration of fission track dating. Isotope Geosci 1:285–317

    Google Scholar 

  • Insel N, Ehlers TA, Schaller M, Barnes JB, Tawackoli S, Poulsen CJ (2010a) Spatial and temporal variability in denudation across the Bolivian Andes from multiple geochronometers. Geomorphology 122:65–77

    Google Scholar 

  • Insel N, Poulsen CJ, Ehlers TA (2010b) Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim Dyn 35(7–8):1477–1492

    Google Scholar 

  • Irving EM (1975) Structural evolution of the northernmost Andes, Colombia. U.S. Geol Surv Prof Pap 846:47

    Google Scholar 

  • James KJ (2006) Arguments for an against the Pacific origin of the Caribbean Plate: discussion, finding for an inter-American orogin. Geologica Acta 4(1–2):279–302

    Google Scholar 

  • Jiang JH, Wu DL, Eckermann SD (2002) Upper Atmosphere Research Satellite (UARS) MLS observation of mountain waves over the Andes. J Geophys Res Atmos 107(D20):SOL15-11–SOL15-10

    Google Scholar 

  • Jordán TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94(3):341–361

    Google Scholar 

  • Kellogg JN (1984) Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins. Geological Society of America Memoir 162:239–261

    Google Scholar 

  • Kellogg JN, Vega V (1995) Tectonic development of Panama, Costa Rica, and the Colombian Andes: Constraints from global positioning system geodetic studies and gravity. In: Mann P (ed) Geologic and tectonic development of the Caribbean plate boundary in southern Central America: Geological Society of America Special Paper, vol 295, Geological Society of America, pp 75–90

    Google Scholar 

  • Kennan L (2000) Large-scale geomorphology of the Andes: interrelationships of tectonics, magmatism and climate. In: Summerfield MA (ed) Geomorphology and global tectonics. John Wiley, New York, pp 167–199

    Google Scholar 

  • Kennan L, Lamb S, Hoke L (1997) High-altitude palaeosurfaces in the Bolivian Andes: evidence for late Cenozoic surface uplift. In: Widdowson M (ed) Palaeosurfaces: recognition, reconstruction and paleoenvironmental interpretation, vol Volume 120. Geological Society of London Special Publication, London, pp 307–324

    Google Scholar 

  • Kennan L, Pindell L (2009) Dextral shear, terrane accretion and basin formation in the Northern Andes: best explained by interaction with a Pacific-derived Caribbean Plate? Geological Society, London, Special Publications 328(1):487–531

    Google Scholar 

  • Kerr AC, Marriner GF, Tarney J, Nivia A, Saunders AD, Thirlwall MF, Sinton CW (1997) Cretaceous basaltic terranes in Western Colombia: elemental, chronological and Sr–Nd Isotopic Constraints on petrogenesis. J Petrol 38:677–702

    Google Scholar 

  • Ketcham RA (2003) Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements. Am Mineral 88:817–829

    Google Scholar 

  • Ketcham RA (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 48:275–314

    Google Scholar 

  • Ketcham RA (2008) HeFTy: Viola, Idaho, Apatite to Zircon, Inc

    Google Scholar 

  • Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics III: extrapolation to geological time scales. Am Mineral 84:1235–1255

    Google Scholar 

  • Kirchner JW, Finkel RC, Riebe CS, Granger DE, Clayton JL, King JG, Megahan WF (2001) Mountain erosion over 10 yr, 10 ky, and 10 my time scales. Geology 29(7):591–594

    Google Scholar 

  • Kohn BR, Shagam R, Banks PO, Burkley LA (1984) Mesozoic-Pleistocene fission-track ages on rocks of the Venezuelan Andes and their tectonic implications. In: Bonini WE, Hargraves RB, Shagam R (eds) The Caribbean-South American plate boundary and regional tectonics, Geological Society of America Memoir, vol 162. Geological Society of America, Boulder, pp 365–384

    Google Scholar 

  • Koons PO (1990) The two-sided wedge in orogeny; erosion and collision from the sand box to the Southern Alps, New Zealand. Geology 18:679–682

    Google Scholar 

  • Koons P (1998) Big mountains, big rivers, and hot rocks. EOS (Transactions of the American Geophysical Union) 79:908

    Google Scholar 

  • Kroonenberg SB, Bakker JGM, Van der Wiel AM (1990) Late Cenozoic uplift and paleogeography of the Colombian Andes – constraints on the development of high-Andean biota. Geologie en Mijnbouw 69(3):279–290

    Google Scholar 

  • Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12(6):519–539

    Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797

    Google Scholar 

  • Laslett GM, Green PF, Duddy IR, Gleadow AJW (1987) Thermal annealing of fission tracks in apatite 2. A Quantitative analysis. Chem Geol 73:25–38

    Google Scholar 

  • Laubacher G, Naeser CW (1994) Fission-track dating of granitic rocks from the Eastern Cordillera of Peru: evidence for Late Jurassic and Cenozoic cooling. J Geol Soc Lond 151(3):473–483

    Google Scholar 

  • Leal-Mejía H, Shaw RP, Melgarejo JC (2011) Phanerozoic granitoid magmatism in Colombia and the tectono-magmatic evolution of the Colombian Andes. In: Cediel F (ed) Petroleum Geology of Colombia. Regional Geology of Colombia, vol 1. Bogotá Colombia, Agencia Nacional de Hidro-carburos (ANH) – EAFIT, pp 109–188

    Google Scholar 

  • van der Lelij R, Spikings R, Mora A (2016) Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. Lithos 248:220–239

    Google Scholar 

  • Lisker F, Ventura B, Glasmacher AU (2009) Apatite thermochronology in modern geology. Geol Soc Lond Spec Publ 324:1–23

    Google Scholar 

  • Lüschen E (1986) Gravity and height changes in the ocean-continent transition zone in western Colombia. Tectonophysics 130(1–4):141151–146157

    Google Scholar 

  • MacDonald WD, Estrada JJ, Sierra GM, Gonzalez H (1996) Late Cenozoic tectonics and paleomagnetism of North Cauca Basin intrusions, Colombian Andes: dual rotation modes. Tectonophysics 261:277–289

    Google Scholar 

  • Mann P, Burke K (1984) Neotectonics of the Caribbean. Rev Geophys 22(4):309–362

    Google Scholar 

  • Mann P, Corrigan J (1990) Model for late Neogene deformation in Panama. Geology 18:558–562

    Google Scholar 

  • Marín-Cerón MI, Restrepo-Moreno SA, Bernet M, Foster DA, Min K, Pardo-Trujillo A, Barbosa-Espitia A, Kamenov G (2015) The Amagá formation (Eocene?-Miocene) in the Cauca-Patía depression: A recorder of major morphotectonic and paleogeographic events between the Western and Central cordilleras. In: Proceedings GSA Annual Meeting, Baltimore, Maryland, USA, vol 47, Geological Society of America Abstracts with Programs, p 675

    Google Scholar 

  • Marshall LG, Butler RF, Drake RE, Curtis GH, Tedford RH (1979) Calibration of the great American interchange. Science 204(4390):272–279

    Google Scholar 

  • Matmon A, Bierman P, Larsen J, Southworth S, Pavich M, Caffee M (2003) Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains. Geology 31(2):155–158

    Google Scholar 

  • Maya M, González H (1995) Unidades litodémicas en la Cordillera Central de Colombia. Bol Geol INGEOMINAS 35(2):3

    Google Scholar 

  • McCourt WJ, Aspden JA, Brook M (1984) New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. J Geol Soc Lond 141:793–802

    Google Scholar 

  • Mégard F (1984) The Andean orogenic period and its major structures in central and northern Peru. J Geol Soc Lond 141(5):893–900

    Google Scholar 

  • Mégard F, Noble DC, McKee EH (1984) Multiple pulses of Neogene compressive deformation in the Ayacucho intermontane basin, Andes of Central Peru. Geol Soc Am Bull 95:1108–1117

    Google Scholar 

  • Milliman JD (2001) Delivery and fate of fluvial water and sediment to the sea: a marine geologist’s view of European rivers. Scientia Marina 65:121–131

    Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91(1):1–21

    Google Scholar 

  • Mittermeier RA, Meyer N, Mittermeier CG (1999) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions, Monterrey, Mexico, Conservation International and Agrupacion Sierra Madre, p 432

    Google Scholar 

  • Molnar P (2004) Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates? Ann Rev Earth Planet Sci 32:67–89

    Google Scholar 

  • Molnar P (2008) Closing of the Central American Seaway and the Ice Age: a critical review. Paleoceanography 23(PA2201). https://doi.org/10.1029/2007PA001574

  • Molnar P, England PC (1990) Late cenozoic uplift of mountain-ranges and global climate change – chicken or egg? Nature 346:29–34

    Google Scholar 

  • Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev Geophys 31(4):357–396

    Google Scholar 

  • Montes C, Robert D, Hatcher RD, Restrepo-Pace PA (2005) Tectonic reconstruction of the northern Andean blocks: Oblique convergence and rotations derived from the kinematics of the Piedras-Girardot area, Colombia. Tectonophysics 399(1–4):221–250

    Google Scholar 

  • Montes C, Guzman G, Bayona G, Cardona A, Valencia V, Jaramillo C (2010) Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería basins. J South Am Earth Sci 29(4):832–848

    Google Scholar 

  • Montes C, Bayona G, Cardona A, Buchs DM, Silva C, Morón S, Hoyos N, Ramírez D, Jaramillo C, Valencia V (2012a) Arc-continent collision and orocline formation: closing of the Central American seaway. J Geophys Res Solid Earth 117(B4):1–25

    Google Scholar 

  • Montes C, Cardona A, McFadden R, Morón S, Silva C, Restrepo-Moreno S, Ramírez D, Hoyos N, Wilson J, Farris D, Bayona GA, Jaramillo CA, Valencia V, Bryan J, Flores JA (2012b) Evidence for middle Eocene and younger land emergence in central Panama: implications for Isthmus closure. Geol Soc Am Bull 124(5–6):780–799

    Google Scholar 

  • Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V, Niño H (2015) Middle Miocene closure of the Central American Seaway. Science 348(6231):226–229

    Google Scholar 

  • Montes-Correa LF (2007) Exhumación de las rocas metamórficas de alto grado que afloran al Oriente del Valle de Aburrá, Antioquia [MSc: Universidad EAFIT], p 134

    Google Scholar 

  • Montgomery DR (2003) Predicting landscape-scale erosion rates using digital elevation models. C. R. Geosci Surf Geosci 35:112111130

    Google Scholar 

  • Montgomery DR (2007) Soil erosion and agricultural sustainability. Proc Natl Acad Sci 104(33):13268–13272

    Google Scholar 

  • Montgomery DR (2008) Dirt: the Erosion of Civilizations. University of California Press,  Berkeley p 296

    Google Scholar 

  • Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201(3):481–489

    Google Scholar 

  • Montgomery DR, Balco G, Willett SD (2001) Climate, tectonics, and the morphology of the Andes. Geology 29(7):579–582

    Google Scholar 

  • Moore MA, England PC (2001) On the inference of denudation rates from cooling ages of minerals. Earth Planet Sci Lett 158:265–284

    Google Scholar 

  • Mora A, Parra M, Strecker MR, Sobel ER, Hooghiemstra H, Torres V, Vallejo-Jaramillo J (2008) Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. GSA Bull 120(7–8):930–949

    Google Scholar 

  • Mora A, Baby P, Roddaz M, Parra M, Brusset S, Hermoza W, Espurt N (2010a) Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In: Hoorn C, Wesselingh FP (eds) Amazonia, landscape and species evolution: a look into the past. Blackwell Publishing, Chichester p 464

    Google Scholar 

  • Mora A, Horton BK, Mesa A, Rubiano J, Ketcham RA, Parra M, Blanco V, Garcia D, Stockli DF (2010b) Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: implications for petroleum systems. AAPG Bull 94(10):1543–1580

    Google Scholar 

  • Mora A, Reyes-Harker A, Rodriguez G, Tesón E, Ramirez-Arias JC, Parra M, Caballero V, Mora JP, Quintero I, Valencia V (2013) Inversion tectonics under increasing rates of shortening and sedimentation: cenozoic example from the Eastern Cordillera of Colombia. Geol Soc Lond Spec Publ 377(1):411–442

    Google Scholar 

  • Nelson E (1982) Post-tectonic uplift of the Cordillera Darwin orogenic core complex: evidence from fission track geochronology and closing temperature–time relationships. J Geol Soc 139(6):755–761

    Google Scholar 

  • Noriega-Londoño S (2016) Geomorfología tectónica del noroccidente de la Cordillera Central, Andes del Norte-Colombia [MSc: Universidad Nacional de Colombia–Sede Medellin], 179 p

    Google Scholar 

  • Norris RJ, Cooper AF (1997) Erosional control on the structural evolution of a transpressional thrust complex on the Alpine Fault, New Zealand. J Struct Geol 19(10):1323–1342

    Google Scholar 

  • O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA et al (2016) Formation of the Isthmus of Panama. Sci Adv 2(8):1–11

    Google Scholar 

  • Ochoa D, Hoorn C, Jaramillo C, Bayona G, Parra M, De la Parra F (2012) The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: evidence from three palynological records. J South Am Earth Sci 39:157–169

    Google Scholar 

  • Oldow JS, Blly AW, Avé Lallemant HG (1990) Transpression, orogenic float, and lithospheric balance. Geology 18(10):991–994

    Google Scholar 

  • Ollier CD (2006) Mountain uplift and the neotectonic period. Ann Geophys 49(1):437–450

    Google Scholar 

  • Ollier CD, Pain CF (2000) The origin of mountains. Routledge, London, p 368

    Google Scholar 

  • Oppenheim V (1941) Geología de la Cordillera Oriental entre los Llanos y el Magdalena. Revista Academia Colombiana de Ciencias Exactas, Físicas y Naturales 14:175–181

    Google Scholar 

  • Osadetz K, Kohn B, Feinstein S, O’Sullivan P (2002) Thermal history of Canadian Williston basin from apatite fission-track thermochronology—implications for petroleum systems and geodynamic history. Tectonophysics 349(1):221–249

    Google Scholar 

  • Padilla L (1981) Geomorfologia de posibles areas peneplanizadas en la Cordillera Occidental de Colombia. Revista CIAF 6:391–402

    Google Scholar 

  • Page WD, James ME (1981) The antiquity of the erosion surfaces and late Cenozoic deposits near Medellín Colombia: implications to tectonics and erosion rates. Revista CIAF 6(1–3):421–454

    Google Scholar 

  • Pardo A, Silva JC, Cardona A, Restrepo-Moreno SA, Osorio JA, Borrero C (2012a) Estudio geológico integrado en la Cuenca Tumaco Onshore. Síntesis cartográfica, sísmica y análisis bioestratigráfico, petrográfico, geocronológico, termocronológico y geoquímico de testigos de perforación y muestras de superficie: Agencia Nacional de Hidrocarburos

    Google Scholar 

  • Pardo A, Silva JC, Cardona A, Restrepo-Moreno SA, Osorio JA, Borrero C (2012b) Estudio integrado de los núcleos y registros obtenidos de los pozos someros (slim holes) perforados por la ANH: Agencia Nacional de Hidrocarburos

    Google Scholar 

  • Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6(3):233–248

    Google Scholar 

  • Pardo-Trujillo A, Restrepo-Moreno SA, Vallejo DF, Flores JA, Trejos R, Foster D, Barbosa-Espitia AA, Bernet M, Marin-Ceron M, Kamenov G (2015) New thermotectonic and paleo-environmental constraints from the Western Cordillera and associated sedimentary basins (Northern Andes, Colombia): the birth of a major orographic barrier and the Choco Bio-geographic region?. In: Proceedings 2015 GSA Annual Meeting, Baltimore, Maryland, 2015, vol 47, Geological Society of America Abstracts with Programs, p 156

    Google Scholar 

  • Parra M, Mora A, Jaramillo C, Strecker MR, Sobel ER, Quiroz L, Rueda M, Torres V (2009) Orogenic wedge advance in the northern Andes: evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. GSA Bull 121(5–6):780–800

    Google Scholar 

  • Parra M, Mora A, Lopez C, Rojas LE, Horton BK (2012) Detecting earliest shortening and deformation advance in thrust belt hinterlands: example from the Colombian Andes. Geology 40(2):175–178

    Google Scholar 

  • Pavlis TL, Hamburger MW, Pavlis GL (1997) Erosional processes as a control on the structural evolution of an actively deforming fold thrust belt: an example from the Pamir-Tien Shan region, Central Asia. Tectonics 16:810–822

    Google Scholar 

  • Peizhen Z, Molnar P, Downs WR (2001) Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature 410(6831):891

    Google Scholar 

  • Penk W (1953) Morphological analysis of landforms. Macmillan, London, p 429

    Google Scholar 

  • Pennington WD (1981) Subduction of the Eastern Panama Basin and Seismotectonics of Northwestern South-America. J Geophys Res 86(NB11):753–770

    Google Scholar 

  • Peyton SL, Carrapa B (2013) An overview of low-temperature thermochronology in the Rocky Mountains and its application to petroleum system analysis

    Google Scholar 

  • Pilger RH (1984) Cenozoic plate kinematics, subduction and magmatism: South American Andes. J Geol Soc Lond 141(5): 793-802.

    Google Scholar 

  • Pindell J, Kennan L, Maresch WV, Stasnek K-P, Draper G, Higgs R (2005) Plate Kinematic and crustal dynamics of circum-Caribbean arc continent Interactions: tectonics controls on basin development in the Proto-Caribbean margins. In: Avé-Lallemant HG, Sisson VB (eds) Caribbean-South American Plate interactions, Venezuela, vol Volume 394. Geological Society of America, Boulder, pp 7–52

    Google Scholar 

  • Pindell J, Kennan L, Stanek KP, Maresch WV, Draper G (2006) Foundations of Gulf of Mexico and Caribbean evolution: eight controversies resolved. Geologica Acta 4(1–2):303–341

    Google Scholar 

  • Pinet P, Souriau M (1988) Continental Erosion and large-scale relief. Tectonics 7(3):563–582

    Google Scholar 

  • Pinter N, Brandon M (1997) How erosion builds mountains. Sci Am 276(44):74–79

    Google Scholar 

  • Piraquive A, Pinzón E, Kammer A, Bernet M, von Quadt A (2017) Early Neogene unroofing of the Sierra Nevada de Santa Marta, as determined from detrital geothermochronology and the petrology of clastic basin sediments. GSA Bull 130 (3-4): 355-380

    Google Scholar 

  • Piraquive-Bermúdez A (2016) Structural Framework, deformation and exhumation of the Santa Marta Schists: accretion and deformational history of a Caribbean Terrane at the north of the Sierra Nevada de Santa Marta [Ph.D.]. Universidad Nacional de Colombia, 394 p

    Google Scholar 

  • Piraquive Bermúdez A, Pinzón E, Bernet M, Kammer A, Von Quadt A, Sarmiento G (2016) Early Neogene unroofing of the Sierra Nevada de Santa Marta along the Bucaramanga-Santa Marta Fault. In: Proceedings EGU General Assembly Conference Abstracts 2016, vol 18, p 17214

    Google Scholar 

  • Poulsen CJ, Ehlers TA, Insel N (2010) Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes. Science 328(5977):490–493

    Google Scholar 

  • Poveda G, Mesa OJ (2000) On the existencoef Lloró (the rainies locality on Earth): enhanced ocean-land-atmosphere interaction by a Low-Level Jet. Geophys Res Lett 27(11):1675–1678

    Google Scholar 

  • Poveda E, Monsalve G, Vargas CA (2015) Receiver functions and crustal structure of the northwestern Andean region, Colombia. J Geophys Res Solid Earth 120(4):2408–2425

    Google Scholar 

  • Ramírez DA, López A, Sierra GM, Toro G (2006) Edad y proveniencia de las rocas volcánico sedimentarias de la Formación Combia en el Suroccidente Antioqueño, Colombia. Boletín de Ciencias de la Tierra 19:9–26

    Google Scholar 

  • Ramírez DA, Foster DA, Min K, Montes C, Cardona A, Sadove G (2016) Exhumation of the Panama basement complex and basins: implications for the closure of the Central American seaway. Geochem Geophys Geosyst 10(1002):1–20

    Google Scholar 

  • Ramos VA (1999) Plate tectonic setting of the Andean Cordillera. Episodes 22:183–190

    Google Scholar 

  • Ramos VA (2009) Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. Geol Soc Am Mem 204:31–65

    Google Scholar 

  • Raymo ME (1994) The Himalayas, organic-carbon burial, and climate in the miocene. Paleoceanography 9(3):399–404

    Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late cenozoic climate. Nature 359(6391):117–122

    Google Scholar 

  • Reiners PW (2005) Zircon (U-Th)/He Thermochronometry. Rev Mineral Geochem 58:151–179

    Google Scholar 

  • Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Ann Rev Earth Planet Sci 34:419–466

    Google Scholar 

  • Reiners PW, Campbell IH, Nicolescu S, Allen CM, Hourigan JK, Garver JI, Mattinson JM, Cowan DS (2005) (U-Th)/(He-Pb) double dating of detrital zircons. American Journal of Science, 305(4), 259–311

    Google Scholar 

  • Reiners PW, Ehlers TA (2005a) In: Rosso J (ed) Low-temperature thermochronology: techniques, interpretations, and applications. Mineralogical Society of America, Chantilly p 622

    Google Scholar 

  • Reiners PW, Ehlers TA (2005b) Past, present, and future of thermochronology. Rev Mineral Geochem 58:1–18

    Google Scholar 

  • Reiners PW, Shuster DL (2009) Thermochronology and landscape evolution. Physics Today 62:31–36

    Google Scholar 

  • Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U-Th)/He thermochronometry: he diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68:1857–1887

    Google Scholar 

  • Restrepo JJ (2008) Obducción y metamorfismo de ofiolitas Triásicas en el flanco occidental del terreno Tahamí. Cordillera Central de Colombia: Boletín de Ciencias de la Tierra, No. 22

    Google Scholar 

  • Restrepo JD, Kjerfve B (2000) Magdalena river: interannual variability (1975–1995) and revised water discharge and sediment load estimates. J Hydrol 235:137–149

    Google Scholar 

  • Restrepo JD, Syvitski JPM (2006) Assessing the effect of natural controls and land use change on sediment yield in a major Andean River: the Magdalena Drainage Basin, Colombia. Ambio 35(2):65–74

    Google Scholar 

  • Restrepo JJ, Toussaint JF (1982) Metamorfismos superpuestos en la Cordillera Central de Colombia. In: Proceedings Memorias V Congreso Latinoamericano de Geología, Buenos Aires, Argentina, pp 505–512

    Google Scholar 

  • Restrepo JJ, Toussaint JF (1988) Terranes and continental accretion in the Colombian Andes. Episodes 11(1):189–193

    Google Scholar 

  • Restrepo JJ, Toussaint JF (1990) Cenozoic arc magmatism of northwestern Colombia. Geol Soc Am Spec Pap 241:205–212

    Google Scholar 

  • Restrepo J, Toussaint J, González H (1981) Edades Mio-pliocenas del magmatismo asociado a la Formación Combia, departamentos de Antioquia y Caldas, Colombia. Geología Norandina 3:21–26

    Google Scholar 

  • Restrepo JD, Kjerfve B, Hermelin M, Restrepo JC (2006) Factors controlling sediment yield in a major South American drainage basin: the Magdalena River, Colombia. J Hydrol 316:213–232

    Google Scholar 

  • Restrepo JJ, Carmona OO, Martens U, Correa AM (2009) Terrenos, complejos y provincias en la Cordillera Central de Colombia. Ingeniería Investigación y Desarrollo 9(2):49–56

    Google Scholar 

  • Restrepo-Moreno SA (2009) Long-term morphotectonic Evolution and Denudation Chronology of the Antioqueño Plateau, Cordillera Central, Colombia [PhD], University of Florida, 223 p

    Google Scholar 

  • Restrepo-Moreno SA, Restrepo-Múnera MA (2007) La Erosión: Un Problema a los Pies de la Sociedad: EOLO. Revista Ambiental-Fundación CON-VIDA 5(11):17–27

    Google Scholar 

  • Restrepo-Moreno SA, Foster DA, Kamenov GD (2007) Formation Age and Magma Sources for the Antioqueño Batholith Derived from LA-ICP-MS Uranium–Lead Dating and Hafnium-Isotope Analysis of Zircon Grains. In: Proceedings Geological Society of America Abstracts with Programs, vol 3, no 6, GSA, pp 493–494

    Google Scholar 

  • Restrepo-Moreno SA, Foster DA, Kamenov GD (2009a) Crystallization Age and Magma Sources of the Antioqueño And Ovejas Batholiths, Central Cordillera, Colombia: evidence From Combined LA-ICP-MS U/Pb Dating and Hf-Isotope Analysis of Zircon Grains and Whole-Rock Geochemistry. In: Proceedings Geological Society of America Annual Meeting Abstracts with Programs, Oregon, USA, vol 41, no 7, GSA, p 222

    Google Scholar 

  • Restrepo-Moreno SA, Foster DA, O’Sullivan P, Donelick RA, Stockli DF (2009b) Cenozoic exhumation of the Antioqueño Plateau, Northern Andes, Colombia, from apatite low-temperature thermochronology. In: Proceedings AGU Fall Meeting, Volume abstract #T43B-2091

    Google Scholar 

  • Restrepo-Moreno SA, Foster DA, Stockli DF, Parra LN (2009c) Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth Planet Sci Lett 278(1–2):1–12

    Google Scholar 

  • Restrepo-Moreno SA, Cardona A, Jaramillo C, Bayona G, Montes C, Farris DW (2010) Constraining Cenozoic uplift/exhumation of the Panama-Chocó block by apatite and zircon low-temperature thermochronology: insights on the onset of collision and the morphotectonic history of the region. In: Proceedings 2010 GSA Denver Annual Meeting, Denver, CO, vol 42, Geological Society of America Abstracts with Programs, p 521

    Google Scholar 

  • Restrepo-Moreno SA, Min K, Barbosa-Espitia AA, Bernet M, Pardo A (2013a) Assessing the thermotectonic history of Colombia’s Western Cordillera through thermochronology/geochronology in plutonic massifs and sedimentary basins: Tectonic, geomorphic and climatic implications. In: Proceedings 2013 GSA Annual Meeting 125th Anniversary of GSA, Denver CO USA, vol 45, Geological Society of America Abstracts with Programs, p 548

    Google Scholar 

  • Restrepo-Moreno SA, Min K, Barbosa A, Foster DA, Bernet M, Pardo A, Marín-Cerón MI, Osorio JA, Hardwick E, Kamenov G (2013b) Thermotectonic History of Colombia’s Western Cordillera and Associated Pacific and Interandean Basins: integrated application of thermochronology/geochronology/provenance analyses. In: Proceedings AGU Fall Meeting, San Francisco

    Google Scholar 

  • Restrepo-Moreno SA, Min K, Bernet M, Barbosa A, Marín-Cerón M, Hardwick E (2013c) Thermotectonic history of the Farallones del Citará Batholith (Colombia’s Western Cordillera) through multi-system, vertical profile thermochronology/geochronology: tectonic, geomorphic and climatic implications. In: Proceedings XIV Congreso Colombiano de Geología y Primer Simposio de Exploradores, Bogotá Colombia, vol Memorias v Sociedad Colombiana de Geología, p 533

    Google Scholar 

  • Restrepo-Moreno SA, Vinasco CJ, Foster DA, Min K, Noriega S, Bernet M, Marín-Cerón MI, Bermúdez M, Botero M (2015) Cenozoic accretion and morpho-tectonic response in the northern Andes (Colombia) through low-temperature thermochronology analyses/modeling. In: Proceedings GSA Annual Meeting, Baltimore, vol 47, Geological Society of America Abstracts with Programs, p 675

    Google Scholar 

  • Restrepo-Pace PA, Ruiz J, Gehrels G, Cosca M (1997) Geochronology and Nd isotopic data of Grenville-age rocks in the Colombian Andes: new constraints for Late Proterozoic–Early Paleozoic paleocontinental reconstructions of the Americas. Earth Planet Sci Lett 150:427–441

    Google Scholar 

  • Reyes-Harker A, Ruiz-Valdivieso CF, Mora A, Ramírez-Arias JC, Rodriguez G, De La Parra F, Caballero V, Parra M, Moreno N, Horton BK (2015) Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. AAPG Bull 99(8):1407–1453

    Google Scholar 

  • Ring U, Brandon MT, Lister GS, Willett SD (1999) Exhumation processes: normal faulting, ductile flow and erosion, Geological Society Special Publication, vol 154. Geological Society Special Publication 378, London

    Google Scholar 

  • Rodríguez G, Zapata G (2012) Características del plutonismo Mioceno superior en el segmento norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del noroccidente colombiano: Boletín de Ciencias de la Tierra, no. 31

    Google Scholar 

  • Roering JJ, Perron JT, Kirchner JW (2007) Functional relationships between denudation and hillslope form and relief. Earth Planet Sci Lett 264(1):245–258

    Google Scholar 

  • Rojas-Agramonte Y, Neubauer F, Bojar AV, Hejl E, Handler R, García-Delgado DE (2006) Geology, age and tectonic evolution of the Sierra Maestra mountains, southeastern Cuba. Geologica Acta 4(1–2):123–150

    Google Scholar 

  • Ruddiman WF (2013) Tectonic uplift and climate change. Springer Science & Business Media, New York p 535

    Google Scholar 

  • Ruddiman WF, Raymo ME, Prell WL, Kutzbach JE (1997) The uplift-climate connection: a synthesis. In: Tectonic uplift and climate change. pp 471–515, Springer, Boston, MA.

    Google Scholar 

  • Saeid E, Bakioglu K, Kellogg J, Leier A, Martinez J, Guerrero E (2017) Garzón Massif basement tectonics: structural control on evolution of petroleum systems in upper Magdalena and Putumayo basins, Colombia. Marine Petrol Geol 88:381–401

    Google Scholar 

  • Saenz EA (2003) Fission track thermochronology and denudational response to tectonics in the north of The Colombian Central Cordillera [Masters Thesis]. Shimane University Japan, 138 p

    Google Scholar 

  • Salazar G, James M, Tistl M (1991) El Complejo Santa Cecilia – La Equis: Evolución y acreción de un arco magmático en el norte de la Cordillera Occidental, Colombia. In: Proceedings Simposio Sobre Magmatismo y su Marco Tectónico, Volume Memorias 2, pp 142–106

    Google Scholar 

  • Sánchez J, Horton BK, Tesón E, Mora A, Ketcham RA, Stockli DF (2012) Kinematic evolution of Andean fold-thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley basin, Colombia. Tectonics 31(3): 1-24

    Google Scholar 

  • Shagam R (1975) The northern termination of the Andes. In: The Gulf of Mexico and the Caribbean. Plenum Press, New York pp 325–420

    Google Scholar 

  • Shagam R, Kohn BP, Banks PO, Dash LE, Vargas R, Rodriguez GI, Pimentel N (1984) Tectonic implications of Cretaceous-Pliocene fission-track ages from rocks of the circum-Maracaibo basin region of western Venezuela and eastern Colombia. In: Bonini WE, Hargraves RB, Shagam R (eds) The Caribbean-South American plate boundary and regional tectonics: Geological Society of America Memoir, vol 162. Geological Society of America, Boulder, pp 385–412

    Google Scholar 

  • Shen CB, Donelick RA, O’Sullivan PB, Jonckheere R, Yang Z, She ZB, Miu XL, Ge X (2012) Provenance and hinterland exhumation from LA-ICP-MS zircon U–Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China. Sedimentary Geology, 281:194–207

    Google Scholar 

  • Shuster DL, Ehlers TA, Rusmoren ME, Farley KA (2005a) Rapid glacial erosion at 1.8 Ma revealed by 4He/3He thermochronometry. Science 310(5754):1668–1670

    Google Scholar 

  • Shuster DL, Vasconcelos PM, Heim JA, Farley KA (2005b) Weathering geochronology by (U-Th)/He dating of goethite. Geochimica Et Cosmochimica Acta 69(3):659–673

    Google Scholar 

  • Sierra G, Marin-Ceron M (2011) Amagá-Cauca- Patía, Medellín Colombia, Fondo Editorial Universidad EAFIT, Petroleum Geology of Colombia, 51 p

    Google Scholar 

  • Sierra G, Silva J, Correa L (2004) Estratigrafía Secuencias de la Formación Amagá. Boletin de Ciencias de la Tierra 15:9–22

    Google Scholar 

  • Silva JC, Sierra GM, Correa LG (2008) Tectonic and climate driven fluctuations in the stratigraphic base level of a Cenozoic continental coal basin, northwestern Andes. J South Am Earth Sci 26:369–382

    Google Scholar 

  • Silva A, Mora A, Caballero V, Rodriguez G, Ruiz C, Moreno N, Parra M, Ramirez-Arias J, Ibañez M, Quintero I (2013) Basin compartmentalization and drainage evolution during rift inversion: evidence from the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, vol 377, pp SP377. 315

    Google Scholar 

  • Sobolev SV, Babeyko AY (2010) What drives orogeny in the Andes? Geology 33(8):617–620

    Google Scholar 

  • Soeters R (1981) Algunos datos sobre la edad de dos superficies de erosion en la Cordillera Central de Colombia. Revista CIAF 6:525–528

    Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)–South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J South Am Earth Sci 11:211–215

    Google Scholar 

  • Spotila JA (2005) Applications of low-temperature thermochronometry to quantification of recent exhumation in mountain belts. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations, and applications, vol Volume 58. MSA, Chantilly, VA, pp 449–466

    Google Scholar 

  • Spotila JA, Farley KA, Sieh K (1998) Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry. Tectonics 17(3):360–378

    Google Scholar 

  • Stallard RF (1988) Weathering and erosion in the humid tropics. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles, vol Volume 251. Kluwer Academic, Dordrecht, pp 226–246

    Google Scholar 

  • Steinman G (1929) Geologie von Peru, Heidelberg, Karl Winter, 448 p

    Google Scholar 

  • Steinmann G (1922) Über die junge Hebung der Kordillere Südamerikas. Geologische Rundschau 13(1):1–8

    Google Scholar 

  • Steinmann G, Stappenbeck R, Sieberg AH, Lissón CI (1930) Geología del Perú, C. Winters Universitätsbuchhandlung

    Google Scholar 

  • Stockli DF, Farley KA, Dumitru TA (2000) Calibration of the apatite (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California. Geology 28(11):983–986

    Google Scholar 

  • Stolar DB, Willett SD, Roe GH (2006) Climatic and tectonic forcing of a critical orogen. Spec Pap Geol Soc Am 398:241–250

    Google Scholar 

  • Stüwe K, Hintermueller MT (2000) Topography and isotherms revisited: the influence of laterally migrating drainage divides. Earth Planet Sci Lett 184:287–303

    Google Scholar 

  • Sugden DE, Summerfield MA, Burt TP (1997) Editorial: linking short-term geomorphic processes to landscape evolution. Earth Surf Proces Landf 22:193–194

    Google Scholar 

  • Summerfield MA (2000) Geomorphology and global tectonics. Wiley, New York. 368 p

    Google Scholar 

  • Summerfield MA (2005) The changing landscape of geomorphology. Earth Surf Proces Landf 30:779–781

    Google Scholar 

  • Summerfield MA, Hulton NJ (1994) Natural controls of fluvial denudation rates in major world drainage basins. J Geophys Res Solid Earth 99(B7):13871–13883

    Google Scholar 

  • Suter F, Sartori M, Neuwerth R, Gorin G (2008) Structural imprints at the front of the Chocó-Panamá indenter: Field data from the North Cauca Valley Basin, Central Colombia. Tectonophysics 460(1):134–157

    Google Scholar 

  • Syracuse EM, Maceira M, Prieto GA, Zhang H, Ammon CJ (2016) Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth Planet Sci Lett 444:139–149

    Google Scholar 

  • Syvitski J (2012) Anthropocene An epoch of our making. Global Change Newslett 78:12–15

    Google Scholar 

  • Syvitski JPM, Milliman JD (2007) Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J Geol 115(1):1–19

    Google Scholar 

  • Taboada A, Rivera LA, Fuenzalida A, Cisternas A, Philip H, Bijwaard H, Olaya J, Rivera C (2000) Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia). Tectonics 19(5):787–813

    Google Scholar 

  • Tagami T, O’Sullivan PB (2005) Fundamentals of fission-track thermochronology. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations, and applications, Reviews in Mineralogy and Geochemistry, vol Volume 58. MSA, Chantilly, pp 19–47

    Google Scholar 

  • Thomas MF (1994) Geomorphology in the tropics. A study of denudation and weathering in low latitudes. Wiley, New York. 482 p

    Google Scholar 

  • Thompson AB, Schulmann K, Jezek J (1997) Thermal evolution and exhumation in obliquely convergent (transpressive) orogens. Tectonophysics 280(1):171–184

    Google Scholar 

  • Toro J, Roure F, Bordas-Le Floch N, Le Cornec-Lance S, Sassi W (2004) Thermal and kinematic evolution of the Eastern Cordillera fold and thrust belt, Colombia. In: Swennen R, Roure F, Granath JW (eds) Deformation, fluid flow, and reservoir appraisal in foreland fold and thrust belts, vol Volume 1, pp 79–115

    Google Scholar 

  • Toro G, Hermelin M, Schwave E, Posada B, Silva D, Poupeau G (2006) Fission-track datings and long-term stability in the Central Cordillera highlands, Colombia. In: Latrubesse E (ed) Tropical Geomorphology with Special Reference to South America, vol Volume 145. Springer, Berlin, pp 1–16

    Google Scholar 

  • Trenkamp R, Kellogg JN, Freymueller JT, Mora HP (2002) Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J South Am Earth Sci 15(2):157–171

    Google Scholar 

  • Tschanz CM, Marvin RF, Cruzb J, Mehnert HH, Cebula GT (1974) Geologic Evolution of Sierra-Nevada-De-Santa-Marta, Northeastern Colombia. Geol Soc Am Bull 85(2):273–284

    Google Scholar 

  • Vallejo F, Restrepo-Moreno SA, Pardo A, Trejos R, Flores JA, Plata A, Min K, Foster DA, López SA (2015) Miocene Andean uplift and its impact on planktonic communities in Eastern Equatorial Pacific basins. In: Proceedings 15th International Nannoplankton Association Meeting, Bohol, Philippines, vol 35, Special Issue Journal of Nannoplankton Research Nannoplankton Association, p 88

    Google Scholar 

  • Van der Beek P, Robert X, Mugnier J-L, Bernet M, Huyghe P, Labrin E (2006) Late Miocene – recent denudation of the central Himalaya and recycling in the foreland basin assessed by detrital apatite fission-track thermochronology of Siwalik sediments, Nepal. Basin Res 18:413–434

    Google Scholar 

  • Van Der Beek P, Van Melle J, Guillot S, Pêcher A, Reiners PW, Nicolescu S, Latif M (2009) Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nature Geosci 2(5):364

    Google Scholar 

  • Van der Hammen T (1957) Palynologic stratigraphy of the Sabana de Bogota (East Cordillera of Colombia). Boletín Geológico (Bogotá) 5:187–203

    Google Scholar 

  • Van der Hammen T (1961) Late Cretaceous and Tertiary stratigraphy and tectogenesis of the Colombian Andes. Geologie en Mijnbouw 40:181–188

    Google Scholar 

  • Van der Hammen T (1989) History of the montane forests of the northern Andes. Plant Syst Evol 162(1-4):109–114

    Google Scholar 

  • Van der Hammen T, Werner JH, van Dommelen H (1973) Palynological record of the upheaval of the Northern Andes: a study of the Pliocene and Lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its High-Andean biota. Rev Paleobot Palynol 16:1–122

    Google Scholar 

  • Van der Hilst R, Mann P (1994) Tectonic implication of tomographic images of subducted lithosphere beneath northwestern South América. Geology 22:451–454

    Google Scholar 

  • Van der Lelij R, Spikings RA, Kerr AC, Kounov A, Cosca M, Chew D, Villagomez D (2010) Thermochronology and tectonics of the Leeward Antilles: evolution of the southern Caribbean Plate boundary zone. Tectonics 29:TC6003. https://doi.org/10.1029/2009TC002654

    Article  Google Scholar 

  • Van der Wiel A (1989) Uplift of the Precambrian Garzon Massif (Eastern Cordillera of the Colombian Andes) in relation to fluvial and vocaniclastic sedimentation in the adjacent Neiva Basin. In: Proceedings Abstract 28th Int. Geological Congr, pp 3-505

    Google Scholar 

  • Van der Wiel AM (1991) Uplift and volcanism of the SE Colombian Andes in relation to Neogene sedimentation in the Upper Magdalena Valley [Ph.D.]. University of Wageningen, 208 p

    Google Scholar 

  • Van der Wiel A, Andriessen P (1991) Precambrian to Recent thermotectonic history of the Garzon massif (Eastern Cordillera of the Colombian Andes) as revealed by fission-track analysis: Uplift and volcanism of the SE Colombian Andes in relation to Neogene sedimentation of the upper Magdalena Valley [Ph.D. Thesis]. Free University, Amsterdam Wageningen

    Google Scholar 

  • Van Houten FB, Travis RB (1968) Cenozoic deposits, Upper Magdalena Valley, Colombia. Am Assoc Petrol Geol 52:675–702

    Google Scholar 

  • Vargas CA, Mann P (2013) Tearing and breaking off of subducted slabs as the result of Collision of the Panama arc-indenter with Northwestern South America. Bull Seismol Soc Am 103(3):2025–2046

    Google Scholar 

  • Velandia F, Acosta J, Terraza R, Villegas H (2005) The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics 399(1):313–329

    Google Scholar 

  • Velandia-Patiño FA (2018) Cinemática de las fallas mayores del Macizo de Santander – énfasis en el modelo estructural y temporalidad al sur de la Falla de Bucaramanga [PhD]. Universidad Nacional de Colombia, 229 p

    Google Scholar 

  • Vermeesch P, Tian Y (2014) Thermal history modelling: HeFTy vs QTQt. Earth-Sci Rev 139:279–290

    Google Scholar 

  • Villagomez-Díaz DR (2010) Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: the tectonic evolution of NW South America [PhD]. Université de Genève, 144 p

    Google Scholar 

  • Villagomez D, Spikings R (2013) Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: early Cretaceous–Tertiary evolution of the northern Andes. Lithos 160:228–249

    Google Scholar 

  • Villagomez D, Spikings R, Mora A, Guzmán G, Ojeda G, Cortés E, van der Lelij R (2011) Vertical tectonics at a continental crust-oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics 30(4): 1-18

    Google Scholar 

  • Villamil T (1999) Campanian–Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeogr Palaeoclimatol Palaeoecol 153:239–275

    Google Scholar 

  • Vinasco CJ, Cordani U (2012) Reactivation episodes of the Romeral Fault System in the northwestern part of the Central Andes, Colombia, through 39Ar-40Ar and A-Ar results. Boletín de Ciencias de la Tierra 32:111–124

    Google Scholar 

  • Vinasco CJ, Cordani UG, Gonzalez H, Weber M, Pelaez C (2006) Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. J South Am Earth Sci 21(4):355–371

    Google Scholar 

  • Walling DE (2006) Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 79(3–4):192–216

    Google Scholar 

  • Ward D (1973) Geología de los cuadrángulos H-12, Bucaramanga y H-13, Pamplona, Departamento de Santander: Boletín Geológico Ingeominas

    Google Scholar 

  • Weng CY, Hooghiemstra H, Duivenvoorden JF (2007) Response of pollen diversity to the climate-driven altitudinal shift of vegetation in the Colombian Andes. Philos Trans Royal Soc B Biol Sci 362(1478):253–262

    Google Scholar 

  • Whipple KX (2009) The influence of climate on the tectonic evolution of mountain belts. Nature Geosci 2(2):97–104

    Google Scholar 

  • Whipple KX, Meade BJ (2006) Orogen response to changes in climatic and tectonic forcing. Earth Planet Sci Lett 243(1–2):218–228

    Google Scholar 

  • Wilder DT (2003) Relative motion history of the Pacific-Nazca (Farallon) plates since 30 million years ago [Master of Science]. University of South Florida, 105 p

    Google Scholar 

  • Wilkinson BH (2005) Humans as geologic agents: a deep-time perspective. Geology 33(3):161–164

    Google Scholar 

  • Wilkinson MT, Humphreys GS (2005) Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates. Soil Res 43(6):767–779

    Google Scholar 

  • Wilkinson BH, McElroy BJ (2005) The impact of humans on continental erosion and sedimentation. GSA Bull 119(1–2):140–156

    Google Scholar 

  • Wilkinson BH, McElroy BJ, Kesler SE, Peters SE, Rothman ED (2009) Global geologic maps are tectonic speedometers – rates of rock cycling from area-age frequencies. GSA Bull 121:760–779

    Google Scholar 

  • Willett SD (1999) Orogeny and orography: the effects of erosion on the structure of mountain belts. J Geophys Res Solid Earth 104(B12):28957–28981

    Google Scholar 

  • Willett SD, Slingerland R, Hovius N (2001) Uplift, shortening, and steady-state topography in active mountain belts. Am J Sci 301(4–5):455–485

    Google Scholar 

  • Willett SD, Fisher D, Fuller C, En-Chao Y, Chia-Yu L (2003) Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 31(11):945–948

    Google Scholar 

  • Willett SD, Hovius N, Brandon MT, Fisher DM (2006) Tectonics, climate, and landscape evolution, Penrose Conference Volume Special Paper 398, Boulder, CO, Geological Society of America 447

    Google Scholar 

  • Willgoose G (2005) Mathematical modeling of whole landscape evolution. Ann Rev Earth Planet Sci 33:443–459

    Google Scholar 

  • Wolf RA, Farley KA, Kass DM (1998) A sensitivity analysis of the apatite (U-Th)/He thermochronometer. Chem Geol 148:105–114

    Google Scholar 

  • Woodburne MO (2010) The great American biotic interchange: dispersals, tectonics, climate, sea level and holding pens. J Mamm Evol 17(4):245–264

    Google Scholar 

  • Wyllie PJ (1976) The way the earth works. Wiley, New York

    Google Scholar 

  • Yarce J, Monsalve G, Becker TW, Cardona A, Poveda E, Alvira D, Ordoñez-Carmona O (2014) Seismological observations in Northwestern South America: evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics 637:57–67

    Google Scholar 

  • Zaun PE, Wagner GA (1985) Fission-track stability in zircons under geological conditions. Nucl Tracks Radiat Meas 10:303–307

    Google Scholar 

  • Zeil, W. (1979) The Andes-a geological review. Gebruder Borntraeger, p 260

    Google Scholar 

  • Zeitler PK, Meltzer AS, Koons PO, Craw D, Hallet B, Chamberlain C, Kidd WSF, Park SK, Seeber L, Bishop M, Shroder J (2001) Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today:4–8

    Google Scholar 

  • Zuluaga MD, Houze RA (2015) Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Monthly Weather Rev 143:298–316

    Google Scholar 

  • Zuluaga J, Mattsson L (1981) Glaciaciones de la Cordillera Occidental de Colombia, Páramo de Frontino. Departamento de Antioquia. Revista CIAF 6:639–654

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio A. Restrepo-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Restrepo-Moreno, S.A., Foster, D.A., Bernet, M., Min, K., Noriega, S. (2019). Morphotectonic and Orogenic Development of the Northern Andes of Colombia: A Low-Temperature Thermochronology Perspective. In: Cediel, F., Shaw, R.P. (eds) Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-76132-9_11

Download citation

Publish with us

Policies and ethics