Skip to main content

Lasers in Hair Growth and Hair Transplantation

  • Chapter
  • First Online:
Lasers in Dermatology and Medicine

Abstract

Results from hair transplantation are consistently natural.

Demand for the procedure has increased significantly.

Lasers have been implemented in the field of hair transplantation to create recipient sites and enhance hair growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–7.

    Article  CAS  PubMed  Google Scholar 

  2. http://ishrs.org/sites/default/files/users/user3/report_2015_practice_census_final_v2.pdf

  3. Unger WP, David LM. Laser hair transplantation. J Dermatol Surg Oncol. 1994;20:515–21.

    Article  CAS  PubMed  Google Scholar 

  4. Chu EA, Rabinov CR, Wong BJF, Krugman ME. Laser-assisted hair transplantation: histologic comparison between CO2 and Ho:YAG lasers. Dermatol Surg. 2001;27:335–42.

    CAS  PubMed  Google Scholar 

  5. Unger WP. Laser hair transplantation II. Dermatol Surg. 1995;21:759–65.

    CAS  PubMed  Google Scholar 

  6. Unger WP. Laser hair transplantation III. Dermatol Surg. 1995;21:1047–55.

    CAS  PubMed  Google Scholar 

  7. Grevelink JM, Brennick JB. Hair transplantation facilitated by flashscanner-enhanced carbon dioxide laser. Otolaryngol Head Neck Surg. 1994;5:278–80.

    Google Scholar 

  8. Grevelink JM. Laser hair transplantation. Dermatol Clin. 1997;15:479–86.

    Article  CAS  PubMed  Google Scholar 

  9. Villnow M. 2300 grafts/laser session. Hair Transplant Forum. 1994;4:6–7.

    Google Scholar 

  10. Grevelink JM, Farinelli W, Bua D, et al. Hair transplantation aided by CO2 lasers. Lasers Surg Med. 1995;7:47.

    Google Scholar 

  11. Smithdeal CD. Carbon dioxide laser-assisted hair transplantation: the effects of laser parameters on scalp tissue – a histologic study. Dermatol Surg. 1997;23:835–40.

    CAS  PubMed  Google Scholar 

  12. Kauvar AN, Waldorf HA, Geronemus RG. A histopathological comparison of “char-free” carbon dioxide lasers. Dermatol Surg. 1996;22:343–8.

    CAS  PubMed  Google Scholar 

  13. Neidel FG, Fuchs M, Krahl D. Laser-assisted autologous hair transplantation with the Er:YAG laser. J Cutan Laser Ther. 1999;1:229–31.

    Article  CAS  PubMed  Google Scholar 

  14. Podda M, Spieth K, Kaufmann R. Er:YAG laser-assisted hair transplantation in cicatricial alopecia. Dermatol Surg. 2000;26:1010–4.

    Article  CAS  PubMed  Google Scholar 

  15. Uebel C. The use of erbium:YAG laser in hair micro-transplant surgery. Clin Appl Notes. 1999;7:1.

    Google Scholar 

  16. Huang Y, Zhuo F, Li L. Enhancing hair growth in male androgenetic alopecia by a combination of fractional CO2 laser therapy and hair growth factors. Lasers Med Sci. 2017;32:1711.

    Article  PubMed  Google Scholar 

  17. Bae JM, Jung HM, Goo B, Park YM. Hair regrowth through wound healing process after ablative fractional laser treatment in a murine model. Lasers Surg Med. 2015;47(5):433–40.

    Article  PubMed  Google Scholar 

  18. Ho C, Nguyen Q, Lask G, Lowe N. Mini-slit hair transplantation using the Ultrapulse carbon dioxide laser handpiece. Dermatol Surg. 1995;21:1056–9.

    CAS  PubMed  Google Scholar 

  19. Unger WP. What’s new in hair replacement surgery. Dermatol Clin. 1996;14:783–802.

    Article  CAS  PubMed  Google Scholar 

  20. Avram MR. Laser-assisted hair transplantation – a status report in the 21st century. J Cosmet Dermatol. 2005;4:135–9.

    Article  PubMed  Google Scholar 

  21. Avram MR, Leonard RT Jr, Epstein ES, Williams JL, Bauman AJ. The current role of laser/light sources in the treatment of male and female pattern hair loss. J Cosmet Laser Ther. 2007;9:27–8.

    Article  PubMed  Google Scholar 

  22. Fitzpatrick RE. Laser hair transplantation. Tissue effects of laser parameters. Dermatol Surg. 1995;21:1042–6.

    CAS  PubMed  Google Scholar 

  23. Rose PT, Nusbaum B. Robotic hair restoration. Dermatol Clin. 2014;32:97–107.

    Article  CAS  PubMed  Google Scholar 

  24. Alajlan A, Shapiro J, Rivers JK, MacDonal N, Wiggin J, Lui H. Paradoxical hypertrichosis after laser epilation. J Am Acad Dermatol. 2005;53:85–8.

    Article  PubMed  Google Scholar 

  25. Bernstein EF. Hair growth induced by diode laser treatment. Dermatol Surg. 2005;31:584–6.

    Article  CAS  PubMed  Google Scholar 

  26. Willey A, Torrontegui J, Azpiazu J, et al. Hair stimulation following laser and intense pulsed light photo-epilation: review of 543 cases and ways to manage it. Lasers Surg Med. 2007;39:297–301.

    Article  PubMed  Google Scholar 

  27. Moreno-Arias G, Castelo-Branco C, Ferrando J. Paradoxical effect after IPL photoepilation. Dermatol Surg. 2002;28:1013–6.

    PubMed  Google Scholar 

  28. Radmanesh M. Paradoxical hypertrichosis and terminal hair change after intense pulsed light hair removal therapy. J Dermatol Treat. 2009;20:52–4.

    Article  Google Scholar 

  29. Mester E, Szende B, Gartner P. The effect of laser beams on the growth of hair in mice. Radiobiol Radiother (Berl). 1968;9:621–6.

    CAS  Google Scholar 

  30. Oron U, Ilic S, De Taboada L, Streeter J. Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg. 2007;25:180–2.

    Article  CAS  PubMed  Google Scholar 

  31. Gavish L, Asher Y, Becker Y, Kleinman Y. Low level laser irradiation stimulates mitochondrial membrane potential and disperses subnuclear promyelocytic leukemia protein. Lasers Surg Med. 2004;35:369–76.

    Article  PubMed  Google Scholar 

  32. Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ. Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol. 1997;66:866–71.

    Article  CAS  PubMed  Google Scholar 

  33. Hamblin MR, Demidova TN. Mechanisms of low level light therapy. Proc SPIE. 2006;6140:614001.

    Article  Google Scholar 

  34. Silveira PC, Streck EL, Pinho RA. Evaluation of mitochondrial respiratory chain activity in wound healing by low-level laser therapy. J Photochem Photobiol B. 2007;86:279–82.

    Article  CAS  PubMed  Google Scholar 

  35. Oron A, Oron U, Chen J, et al. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke. 2006;37:2620–4.

    Article  PubMed  Google Scholar 

  36. Lampl Y, Zivin JA, Fisher M, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke. 2007;38:1843–9.

    Article  PubMed  Google Scholar 

  37. Leung MC, Lo SC, Siu FK, So KF. Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up-regulates the expression of transforming growth factor-beta 1. Lasers Surg Med. 2002;31:283–8.

    Article  PubMed  Google Scholar 

  38. Djavid GE, Mahrdad R, Ghasemi M, Hasan-Zadeh H, Sotoodeh-Manesh A, Pouryaghoub G. In chronic low back pain, low level laser therapy combined with exercise is more beneficial than exercise along in the long term: a randomized trial. Aust J Physiother. 2007;53:155–60.

    Article  PubMed  Google Scholar 

  39. Fikackova H, Dostalova T, Navratil L, Klaschka J. Effectiveness of low-level laser therapy in temporomandibular joint disorders: a placebo-controlled study. Photomed Laser Surg. 2007;25:297–303.

    Article  CAS  PubMed  Google Scholar 

  40. Ekim A, Armagan O, Tascioglu F, Oner C, Colak M. Effect of low level laser therapy in rheumatoid arthritis patients with carpal tunnel syndrome. Swiss Med Wkly. 2007;137:347–52.

    PubMed  Google Scholar 

  41. www.laser-therapeutics.net/articles.htm

  42. www.healing.org/only-7.html

  43. Hawkins D, Abrahamse H. Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg. 2006;24:705–14.

    Article  CAS  PubMed  Google Scholar 

  44. Al-Watban FA, Zhang XY, Andres BL. Low-level laser therapy enhances wound healing in diabetic rats: a comparison of different lasers. Photomed Laser Surg. 2007;25:72–7.

    Article  PubMed  Google Scholar 

  45. Aimbire F, Albertini R, Pacheco MT, et al. Low-level laser therapy induces dose-dependent reduction of TNF-alpha levels in acute inflammation. Photomed Laser Surg. 2006;24:33–7.

    Article  CAS  PubMed  Google Scholar 

  46. Castano AP, Dai T, Yaroslavsky I, et al. Low-level laser therapy for zymosan-induced arthritis in rats: importance of illumination time. Lasers Surg Med. 2007;39:543–50.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Albertini R, Aimbire F, Villaverde AB, Silva JA Jr, Costa MS. COX-2 mRNA expression decreases in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low-level laser therapy. Inflamm Res. 2007;56:228–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ehrreich SJ, Furchgott RF. Relaxation of mammalian smooth muscles by visible and ultraviolet radiation. Nature. 1968;218:682–4.

    Article  CAS  PubMed  Google Scholar 

  49. Furchgott RF, Jothianandan D. Endothelium-dependent and independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide, and light. Blood Vessels. 1991;28:52–61.

    CAS  PubMed  Google Scholar 

  50. Woolston C. Does Lasercomb stop hair loss? The evidence is thin. Los Angeles Times. January 12, 2009;

    Google Scholar 

  51. Website: www.hairmax.com/clinical-studies-approvals/fda-clearance/

  52. www.hairmax.com

  53. www.coldlasertherapies.com.

  54. www.museumofquackery.com/devices/ut.htm

  55. www.sunetics.com.

  56. www.laserhaircare.com

  57. Satino JL, Markou M. Hair regrowth and increased hair tensile strength using the HairMax LaserComb for low-level laser therapy. Int J Cosmet Surg Aesthet Dermatol. 2003;5:113–7.

    Article  Google Scholar 

  58. Avram MR, Rogers NE. The use of low-level light for hair growth: part I. J Cosmet Laser Ther. 2009;11:110–7.

    Article  PubMed  Google Scholar 

  59. Leavitt M, Charles G, Heyman E, Michaels D. HairMax LaserComb Laser Phototherapy device in the treatment of male androgenetic alopecia. Clin Drug Invest. 2009;29:283–92.

    Article  Google Scholar 

  60. Lanzafame RJ, Blanche RR, Bodian AB, Chiacchierini RP, Fernandez-Obregon A, Kazmirek ER. The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg Med. 2013;45:487–95.

    Article  PubMed  Google Scholar 

  61. Personal email communication with Dr. Raymond Lanzafame on August 7, 2014.

    Google Scholar 

  62. Jimenez JJ, Wikramanayake TC, Bergfeld W, et al. Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol. 2014;15(2):115–27.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol. 2008;84:1091–9.

    Article  CAS  PubMed  Google Scholar 

  64. Avci P, Gupta GK, Clark J, Wikonkal N, Hamblin MR. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg Med. 2014;46:144–51.

    Article  PubMed  Google Scholar 

  65. Karu TI, Pyatibrat LV, Afanasyeva NI. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med. 2005;36:307–14.

    Article  PubMed  Google Scholar 

  66. Proctor PH. Endothelium-derived relaxing factor and minoxidil: active mechanisms in hair growth. Arch Dermatol. 1989;125:1146.

    Article  CAS  PubMed  Google Scholar 

  67. Rossi A, Cantisani C, Melis L, Iorio A, Scali E, Calvieri S. Minoxidil use in dermatology, side effects and recent patents. Recent Patents Inflamm Allergy Drug Discov. 2012;6:130–6.

    Article  CAS  Google Scholar 

  68. Chen AC, Arany PR, Huang YY, Tomkinson EM, Shamra SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS, Hamblin MR. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One. 2011;6:e22453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cury V, Moretti AI, Assis L, Bossini P, Crusca Jde S, Neto CB, Fangel R, DeSouza HP, Hamblin MR, Parizotto NA. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1a and MMP-2. J Photochem Photobiol B. 2013;125:164–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zaidi M, Krolikowski JG, Jones DW, Pritchard KA Jr, Struve J, Nandedkar SD, Lohr NL, Pagel PS, Weihrauch D. Transient repetitive exposure to low level light therapy enhances collateral blood vessel growth in the ischemic hindlimb of the tight skin mouse. Photochem Photobiol. 2013;89:709–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Prado RP, Garcia SB, Thomazini JA, Piccinato CE. Effects of 830 and 670 nm laser on viability of random skin flap in rats. Photomed Laser Surg. 2012;30:418–24.

    Article  PubMed  Google Scholar 

  72. Feng J, Zhang Y, Xing D. Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal. 2012;24:1116–25.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang T, Liu L, Fan J, et al. Low-level laser treatment stimulates hair growth via upregulating Wnt10b and beta-catenin expression in C3H/HeJ mice. Lasers Med Sci. 2017;32(5):1189–95.

    Article  PubMed  Google Scholar 

  74. Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell. 2002;2(5):643–53.

    Article  CAS  PubMed  Google Scholar 

  75. Jang SK, Kim ST, Lee DI, et al. Decoction and fermentation of selected medicinal herbs promote hair regrowth by inducing hair follicle growth in conjunction with Wnts signaling. Evid Based Complement Alternat Med. 2016;2016:4541580.

    PubMed  PubMed Central  Google Scholar 

  76. Li Y-H, Zhang K, Yang K, et al. Adenovirus-mediated Wnt10b overexpression induces hair follicle regeneration. J Investig Dermatol. 2013;133(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  77. Zarei M, Wikramanayake TC, Falto-Aizpurua L, Schachner LA, Jimenez JJ. Low level laser therapy and hair regrowth: an evidence-based review. Lasers Med Sci. 2016;31(2):363–71.

    Article  PubMed  Google Scholar 

  78. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M. Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg. 2005;31:334–40.

    Article  CAS  PubMed  Google Scholar 

  79. Demidova-Rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR. Low-level light stimulates excisional wound healing in mice. Lasers Surg Med. 2007;39:706–15.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B. Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci. 2008;23:211–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rogers, N.E., Avram, M.R., Camacho, I., Rajabi-Estarabadi, A. (2018). Lasers in Hair Growth and Hair Transplantation. In: Nouri, K. (eds) Lasers in Dermatology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-76118-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76118-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76116-9

  • Online ISBN: 978-3-319-76118-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics