Skip to main content

Recognizing Residents and Tourists with Retail Data Using Shopping Profiles

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST,volume 233)

Abstract

The huge quantity of personal data stored by service providers registering customers daily life enables the analysis of individual fingerprints characterizing the customers’ behavioral profiles. We propose a methodological framework for recognizing residents, tourists and occasional shoppers among the customers of a retail market chain. We employ our recognition framework on a real massive dataset containing the shopping transactions of more than one million of customers, and we identify representative temporal shopping profiles for residents, tourists and occasional customers. Our experiments show that even though residents are about 33% of the customers they are responsible for more than 90% of the expenditure. We statistically validate the number of residents and tourists with national official statistics enabling in this way the adoption of our recognition framework for the development of novel services and analysis.

Keywords

  • Residents tourists classification
  • Customer shopping profile
  • Retail data
  • Spatio-temporal analytics
  • Data mining

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-76111-4_35
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-76111-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   95.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. 1.

    https://www.unicooptirreno.it/.

  2. 2.

    http://dati.istat.it/, http://demo.istat.it/.

  3. 3.

    Missing years are not available on the ISTAT website.

References

  1. Agrawal, R., et al.: Mining association rules between sets of items in large databases. In: ACM Sigmod Record, vol. 22, pp. 207–216. ACM (1993)

    Google Scholar 

  2. Andrienko, G., et al.: Thematic patterns in georeferenced tweets through space-time visual analytics. Comput. Sci. Eng. 15(3), 72–82 (2013)

    CrossRef  Google Scholar 

  3. Brown, G., et al.: The relationship between place attachment and landscape values: toward mapping place attachment. Appl. Geogr. 27(2), 89–111 (2007)

    CrossRef  Google Scholar 

  4. Cao, G., et al.: A scalable framework for spatiotemporal analysis of location-based social media data. Comput. Environ. Urban Syst. 51, 70–82 (2015)

    CrossRef  Google Scholar 

  5. Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Identifying users profiles from mobile calls habits. In: KDD Workshop, pp. 17–24. ACM (2012)

    Google Scholar 

  6. Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Analysis of GSM calls data for understanding user mobility behavior. In: Big Data, pp. 550–555. IEEE (2013)

    Google Scholar 

  7. Gabrielli, L., Furletti, B., Trasarti, R., Giannotti, F., Pedreschi, D.: City users’ classification with mobile phone data. In: Big Data, pp. 1007–1012. IEEE (2015)

    Google Scholar 

  8. Girardin, F., et al.: Understanding of tourist dynamics from explicitly disclosed location information. In: Symposium on LBS and Telecartography, vol. 58 (2007)

    Google Scholar 

  9. Guidotti, R., Coscia, M., Pedreschi, D., Pennacchioli, D.: Behavioral entropy and profitability in retail. In: DSAA, pp. 1–10. IEEE (2015)

    Google Scholar 

  10. Hawelka, B., et al.: Geo-located twitter as proxy for global mobility patterns. Cartogr. Geogr. Inf. Sci. 41(3), 260–271 (2014)

    CrossRef  Google Scholar 

  11. Long, P.T., Perdue, R.R.: The economic impact of rural festivals and special events. J. Travel Res. 28(4), 10–14 (1990)

    CrossRef  Google Scholar 

  12. Lulli, A., et al.: Improving population estimation from mobile calls: a clustering approach. In: ISCC, pp. 1097–1102. IEEE (2016)

    Google Scholar 

  13. Mamei, M., et al.: Analysis of tourist activity from cellular data. In: POSTER (2017)

    Google Scholar 

  14. Manca, M., et al.: Using social media to characterize urban mobility patterns: state-of-the-art survey and case-study. Online Soc. Netw. Media 1, 56–69 (2017)

    CrossRef  Google Scholar 

  15. McDonald, W.J.: Time use in shopping: the role of personal characteristics. J. Retail. 70(4), 345–365 (1994)

    CrossRef  Google Scholar 

  16. Moreno Gil, S., Ritchie, J.B.: Understanding the museum image formation process: a comparison of residents and tourists. JTR 47(4), 480–493 (2009)

    Google Scholar 

  17. Pareto, V.: Manual of Political Economy. Macmillan, London (1971)

    Google Scholar 

  18. Snepenger, D.J., Murphy, L., OConnell, R., Gregg, E.: Tourists and residents use of a shopping space. Ann. Tour. Res. 30(3), 567–580 (2003)

    CrossRef  Google Scholar 

  19. Tan, P.-N., et al.: Introduction to Data Mining. Pearson Education India, Noida (2006)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the European Project SoBigData, 654024, http://www.sobigdata.eu. We thank UniCoop Tirreno for allowing us to analyze the data and to publish the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Guidotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Guidotti, R., Gabrielli, L. (2018). Recognizing Residents and Tourists with Retail Data Using Shopping Profiles. In: Guidi, B., Ricci, L., Calafate, C., Gaggi, O., Marquez-Barja, J. (eds) Smart Objects and Technologies for Social Good. GOODTECHS 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-319-76111-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76111-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76110-7

  • Online ISBN: 978-3-319-76111-4

  • eBook Packages: Computer ScienceComputer Science (R0)