Advertisement

Cyclodextrin Nanosponges in Drug Delivery and Nanotherapeutics

  • Riyaz Ali Osmani
  • Parthasarathi Kulkarni
  • Shringari Manjunatha
  • Vishakante Gowda
  • Umme Hani
  • Rudra Vaghela
  • Rohit Bhosale
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 14)

Abstract

The drug delivery technology landscape has become highly competitive and rapidly evolving as more and more developments in delivery systems are being integrated to optimize the efficacy and cost effectiveness of therapy. Currently, extensive research in the field of nanotechnology and nanomedicines is ongoing with a major focus towards manipulating materials at nanoscale; which can subsequently lead to advancements in diagnosis, imaging as well as treatment of a broad spectrum of diseases. In wake of recent findings, cyclodextrin based nanosponges comprising of hyper-crosslinked cyclodextrin polymers, are trendsetting in modern times with nanostructured three-dimensional network. Nanosponges based systems can address the issues related to solubility, absorption, penetration, bioavailability, in vivo stability, and can achieve sustained and targeted delivery with maximum therapeutic efficacy for a number of pharmaceutical entities. Molecules having molar mass between 100 and 400 Da, and with less than five condensed rings can be easily entrapped into nanocavities. For synthesizing nanosponges, melt method, solvent method, quasi-emulsion solvent diffusion, ultrasound and microwave assisted method can be adopted. Nanosponges synthesized via microwave method exhibits narrow size distribution, and higher crystallinity and drug loading (~2 fold) than the counterparts synthesized via conventional methods. Among diverse types, carbamate nanosponges have notable ability of binding to the organic molecules with loading capacity of 20–40 mg per cm3, and ~84% of dissolved organic carbon can be taken away from waste water; hence mostly used for water purification. However, polarity and flexible dimensions are the distinct features of carbonate nanosponges, and via synthetic reaction under different conditions, carbonate nanosponges can be obtained in amorphous or semi-crystalline form. Ester nanosponges have ability to host apolar organic molecules together with the cations, owing to presence of free polar carboxylic group. Lately, stimuli-responsive, intelligent or smart polymeric nanosponges have also been proposed for controlled delivery of low molecular weight and macromolecular drugs. In all, cyclodextrin nanosponges based drug delivery systems have achieved two to tenfolds improved stability, four to 25-folds enhanced solubility and three to fivefolds increased drug targeting efficiency; when compared to direct injection. The extension of nanosponges based drug delivery systems is an exhilarating and demanding research pasture, predominantly to overcome problems allied to existing formulations and for the further progressions in the field of pharmaceutical sciences and technology. Herein, nanosponges has been extensively reviewed as novel nanocarrier and adjunct with an all-inclusive focus on the suitability, versatility and characteristics of cyclodextrin based nanosponges for the promising applications in the fields of drug delivery and nanotherapeutics. Additionally in this chapter, development of nanosponges with a major focus on cyclodextrin based nanosponges has been well covered, and special importance has been given on discussing the preparation methods, characterization techniques and prominent applications of these novel drug delivery carriers for therapeutic purposes.

Keywords

Nanoscience Drug delivery Nanotechnology Diagnostics Therapeutics Solubility Cyclodextrin Nanosponges Drug stability Nanomedicine Cancer 

Notes

Acknowledgement(s)

The authors express heartfelt gratitude towards the JSS University and JSS College of Pharmacy, Mysuru for providing all the obligatory facilities in course of this work. Moreover, authors acknowledge the timely support from Defence Food Research Laboratory (DFRL), Ministry of Defence, Mysuru.

References

  1. Agueros M, Ruiz-Gaton L, Vauthier C, Bouchemal K, Espuelas S, Ponchel G, Irache JM (2009) Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci 38:405–413.  https://doi.org/10.1016/j.ejps.2009.09.010 CrossRefGoogle Scholar
  2. Aldawsari HM, Badr-Eldin SM, Labib GS, El-Kamel AH (2015) Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in vivo evaluation. Int J Nanomedicine 10:893–902.  https://doi.org/10.2147/ijn.s74771 CrossRefGoogle Scholar
  3. Ali I, Rahis-Uddin Salim K, Rather MA, Wani WA, Haque A (2011) Advances in nano drugs for cancer chemotherapy. Curr Cancer Drug Targets 11:135–146.  https://doi.org/10.2174/156800911794328493 CrossRefGoogle Scholar
  4. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48.  https://doi.org/10.1016/j.addr.2012.09.037 CrossRefGoogle Scholar
  5. Alongi J, Poskovic M, Frache A, Trotta F (2011) Role of β-cyclodextrin nanosponges in polypropylene photooxidation. Carbohydr Polym 86:127–135.  https://doi.org/10.1016/j.carbpol.2011.04.022 CrossRefGoogle Scholar
  6. Amri A, Chaumeil JC, Sfar S, Charrueau C (2012) Administration of resveratrol: what formulation solutions to bioavailability limitations? J Control Release 158:182–193.  https://doi.org/10.1016/j.jconrel.2011.09.083 CrossRefGoogle Scholar
  7. Anandam S, Selvamuthukumar S (2014) Fabrication of cyclodextrin nanosponges for quercetin delivery: physicochemical characterization, photostability and antioxidant effects. J Mater Sci 49:8140–8153.  https://doi.org/10.1007/s10853-014-8523-6 CrossRefGoogle Scholar
  8. Anandam S, Selvamuthukumar S (2016) Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation. J Part Sci Technol 34:341–346.  https://doi.org/10.1080/02726351.2015.1081658 CrossRefGoogle Scholar
  9. Anandam S, Sobhita RP, Srinivas N, Selvamuthukumar S (2016) Beneficial effects of microwave assisted heating versus conventional heating in synthesis of cyclodextrin based nanosponges. Mater Today Proc 3:3951–3959.  https://doi.org/10.1016/j.matpr.2016.11.055 CrossRefGoogle Scholar
  10. Ansari KA, Torne SJ, Vavia PR, Trotta F, Cavalli R (2011a) Paclitaxel loaded nanosponges: in vivo characterization and cytotoxicity study on MCF-7 cell line culture. Curr Drug Deliv 8:192–202.  https://doi.org/10.2174/156720111794479934 CrossRefGoogle Scholar
  11. Ansari KA, Vavia PR, Trotta F, Cavalli R (2011b) Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterization, stability, cytotoxicity and permeation study. AAPS PharmSciTech 12:279–286.  https://doi.org/10.1208/s12249-011-9584-3 CrossRefGoogle Scholar
  12. Ansari R, Maheshwari R, Mahajan SC, Jain V (2014) Development and characterization of hydrogel system bearing minoxidil loaded β-cyclodextrin based nanosponges for topical delivery. Drug Deliv Lett 4:148–155.  https://doi.org/10.2174/2210303104666140313232454 CrossRefGoogle Scholar
  13. Arima H, Yamashita S, Mori Y, Hayashi Y, Motoyama K, Hattori K, Takeuchi T, Jono H, Ando Y, Hirayama F, Uekama K (2010) In vitro and in vivo gene delivery mediated by lactosylated dendrimer/alphacyclodextrin conjugates (G2) into hepatocytes. J Control Release 146:106–117.  https://doi.org/10.1016/j.jconrel.2010.05.030 CrossRefGoogle Scholar
  14. Aynie I, Vauthier C, Chacun H, Fattal E, Couvreur P (1999) Sponge like alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 9:301–312.  https://doi.org/10.1089/oli.1.1999.9.301 CrossRefGoogle Scholar
  15. Baglole KN, Boland PG, Wagner BD (2005) Fluorescence enhancement of curcumin upon inclusion into parent and modified cyclodextrins. J Photochem Photobiol A 173:230–237.  https://doi.org/10.1016/j.jphotochem.2005.04.002 CrossRefGoogle Scholar
  16. Bencini M, Ranucci E, Ferruti P, Manfredi A, Trotta F, Cavalli R (2008) Poly(4-acryloylmorpholine) oligomers carrying a beta-cyclodextrin residue at one terminus. J Polym Sci Part A Polym Chem 46:1607–1617.  https://doi.org/10.1002/pola.22497 CrossRefGoogle Scholar
  17. Benjamin G, Bharathwaj S (2011) Biological synthesis of silver nanoparticles from Allium cepa (onion), International conference on bioscience, biochemistry and bioinformatics IPCBEE, vol 5. IACSIT Press, Singapore, pp 35–38Google Scholar
  18. Berta GN, Salamone P, Sprio AE, Di Scipio F, Marinos LM, Sapino S, Carlotti ME, Cavalli R, Di Carlo F (2010) Chemoprevention of 7,12-dimethylbenz anthracene (DMBA)-induced oral carcinogenesis in hamster cheek pouch by topical application of resveratrol complexed with 2-hydroxypropylgamma-cyclodextrin. Oral Oncol 46:42–48.  https://doi.org/10.1016/j.oraloncology.2009.10.007 CrossRefGoogle Scholar
  19. Berto S, Bruzzoniti MC, Cavalli R, Perrachon D, Prenesti E, Sarzanini C, Trotta F, Tumiatti W (2007) Synthesis of new ionic beta-cyclodextrin polymers and characterization of their heavy metals retention. J Incl Phenom Macrocycl Chem 57:631–636.  https://doi.org/10.1007/s10847-006-9273-0 CrossRefGoogle Scholar
  20. Bilensoy E (2015) Amphiphilic cyclodextrin nanoparticles for effective and safe delivery of anticancer drugs. Adv Exp Med Biol 822:201.  https://doi.org/10.1007/978-3-319-08927-0_24 CrossRefGoogle Scholar
  21. Bilensoy E, Atilla Hincal A (2010) Cyclodextrin-based nanomaterials in pharmaceutical field. In: Pharmaceutical sciences encyclopaedia: drug siscovery, development, and manufacturing. Wiley, Hoboken, pp 2343–2356.  https://doi.org/10.1002/9780470571224.pse370
  22. Bilensoy E, Gurkaynak O, Dogan AL, Hincal AA (2008) Safety and efficacy of amphiphilic beta-cyclodextrin nanoparticles for paclitaxel delivery. Int J Pharm 347:153–170.  https://doi.org/10.1016/j.ijpharm.2007.06.051 CrossRefGoogle Scholar
  23. Binello A, Robaldo B, Barge A, Cavalli R, Cravotto G (2008) Synthesis of cyclodextrin-based polymers and their use as debittering agents. J Appl Polym Sci 107:2549–2557.  https://doi.org/10.1002/app.27249 CrossRefGoogle Scholar
  24. Bricout H, Hapiot F, Ponchel A, Monflier E, Tilloy S (2009) Chemically modified cyclodextrins: an attractive class of supramolecular hosts for the development of aqueous biphasic catalytic processes. Sustainability 1:924–945.  https://doi.org/10.3390/su1040924 CrossRefGoogle Scholar
  25. Cavalli R, Caputo O, Gasco MR (2000) Preparation and characterization of solid lipid nanospheres containing paclitaxel. Eur J Pharm Sci 10:305–309.  https://doi.org/10.1016/s0928-0987(00)00081-6 CrossRefGoogle Scholar
  26. Cavalli R, Carlotti E, Trotta F, Torne S, Tumiatti V, Roggero C, Trotta M (2006a) Nanospugne a base di ciclodestrine per la veicolazione del linaiolo. In: Proceedings Adritelf conference, Catania, Italy. p 151Google Scholar
  27. Cavalli R, Trotta F, Tumiatti W (2006b) Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem 56:209–213.  https://doi.org/10.1007/s10847-006-9085-2 CrossRefGoogle Scholar
  28. Cavalli R, Trotta F, Carlotti ME, Possetti B, Trotta M (2007a) Nanoparticles derived from amphiphilic gamma-cyclodextrins. J Incl Phenom Macrocycl Chem 57:657–661.  https://doi.org/10.1007/s10847-006-9269-9 CrossRefGoogle Scholar
  29. Cavalli R, Trotta F, Trotta M, Pastero L, Aquilano D (2007b) Effect of alkylcarbonate of gammacyclodextrins with different chain lengths on drug complexation and release characteristics. Int J Pharm 339:197–204.  https://doi.org/10.1016/j.ijpharm.2007.03.001 CrossRefGoogle Scholar
  30. Cavalli R, Donalisio M, Civra A, Ferruti P, Ranucci E, Trotta F, Lembo D (2009) Enhanced antiviral activity of acyclovir loaded into beta-cyclodextrin-poly(4-acryloylmorpholine)conjugate nanoparticles. J Control Release 137:116–122.  https://doi.org/10.1016/j.jconrel.2009.04.004 CrossRefGoogle Scholar
  31. Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P (2010) Nanosponge formulations as oxygen delivery systems. Int J Pharm 402:254–257.  https://doi.org/10.1016/j.ijpharm.2010.09.025 CrossRefGoogle Scholar
  32. Cavalli R, Argenziano M, Dianzani C, Zara G, Caldera F (2014) Disulfide nanosponges as innovative glutathione-responsive nanocarrier for doxorubicin delivery. 41th CRS Meeting, Chicago, poster code 443Google Scholar
  33. Celebioglu A, Umu OC, Tekinay T, Uyar T (2014) Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids Surf B: Biointerfaces 116:612–619.  https://doi.org/10.1016/j.colsurfb.2013.10.029 CrossRefGoogle Scholar
  34. Chauhan AS (2015) Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann N Y Acad Sci 1348:134–140.  https://doi.org/10.1111/nyas.12816 CrossRefGoogle Scholar
  35. Chen ZG (2010) Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med 16:594–602.  https://doi.org/10.1016/j.molmed.2010.08.001 CrossRefGoogle Scholar
  36. Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z (2011) Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 152:2–12.  https://doi.org/10.1016/j.jconrel.2011.01.030 CrossRefGoogle Scholar
  37. Choi SG, Lee SE, Kang BS, Ng CL, Davaa E, Park JS (2014) Thermosensitive and mucoadhesive sol-gel composites of paclitaxel/dimethyl-β-cyclodextrin for buccal delivery. PLoS One 9:e109090.  https://doi.org/10.1371/journal.pone.0109090 CrossRefGoogle Scholar
  38. Cina V, Russo M, Lazzara G, Chillura Martino D, Lo Meo P (2017) Pre- and post-modification of mixed cyclodextrin-calixarene co-polymers: a route towards tunability. Carbohydr Polym 157:1393–1403.  https://doi.org/10.1016/j.carbpol.2016.11.018 CrossRefGoogle Scholar
  39. Conte C, Caldera F, Catanzano O, D’Angelo I, Ungaro F, Miro A, Pellosi DS, Trotta F, Quaglia F (2014) β-cyclodextrin nanosponges as multifunctional ingredient in water-containing semisolid formulations for skin delivery. J Pharm Sci 103:3941–3949.  https://doi.org/10.1002/jps.24203 CrossRefGoogle Scholar
  40. Cooper CA, Chahine LM (2016) Biomarkers in prodromal parkinson disease: a qualitative review. J Int Neuropsychol Soc 22:956–967.  https://doi.org/10.1017/s1355617716000503 CrossRefGoogle Scholar
  41. Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65:21–23.  https://doi.org/10.1016/j.addr.2012.04.010 CrossRefGoogle Scholar
  42. Couvreur P, Tulkens P, Roland M, Trouet A, Speiser P (1977) Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett 84:323–326.  https://doi.org/10.1016/0014-5793(77)80717-5 CrossRefGoogle Scholar
  43. Daga M, Ullio C, Argenziano M, Dianzani C, Cavalli R, Trotta F, Ferretti C, Zara GP, Gigliotti CL, Ciamporcero ES, Pettazzoni P, Corti D, Pizzimenti S, Barrera G (2016) GSH-targeted nanosponges increase doxorubicin-induced toxicity “in vitro” and “in vivo” in cancer cells with high antioxidant defenses. Free Radic Biol Med 97:24–37.  https://doi.org/10.1016/j.freeradbiomed.2016.05.009 CrossRefGoogle Scholar
  44. Dakankov V, Llyin M, Tsyurupa M, Timofeeva G, Dubronina L (1996) From a dissolved polystyrene coil to intra-molecularly hyper-crosslinked nanosponges. Macromolecules 29:8398–8403.  https://doi.org/10.1021/ma951673i CrossRefGoogle Scholar
  45. Darandale SS, Vavia PR (2013) Cyclodextrin based nanosponges of curcumin: formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem 75:315–322.  https://doi.org/10.1007/s10847-012-0186-9 CrossRefGoogle Scholar
  46. Davis ME (2009) Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv Drug Deliv Rev 61:1189–1192.  https://doi.org/10.1016/j.addr.2009.05.005 CrossRefGoogle Scholar
  47. Davis AA, Racette B (2016) Parkinson disease and cognitive impairment: five new things. Neurol Clin Pract 6:452–458.  https://doi.org/10.1212/cpj.0000000000000285 CrossRefGoogle Scholar
  48. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141:320–327.  https://doi.org/10.1016/j.jconrel.2009.10.014 CrossRefGoogle Scholar
  49. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, Noker P, Yao R, Labao E, Hawkins M, Soon-Shiong P (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12:1317–1324.  https://doi.org/10.1158/1078-0432.ccr-05-1634 CrossRefGoogle Scholar
  50. Deshmukh K, Tanwar YS, Shende P, Cavalli R (2015) Biomimetic estimation of glucose using non-molecular and molecular imprinted polymer nanosponges. Int J Pharm 494:244–248.  https://doi.org/10.1016/j.ijpharm.2015.08.022 CrossRefGoogle Scholar
  51. Deshmukh K, Tanwar YS, Sharma S, Shende P, Cavalli R (2016) Functionalized nanosponges for controlled antibacterial and antihypocalcemic actions. Biomed Pharmacother 84:485–494.  https://doi.org/10.1016/j.biopha.2016.09.017 CrossRefGoogle Scholar
  52. Deshpande A, Patel P (2014) Preparation and evaluation of cyclodextrin based atorvastatin nanosponges. Am J PharmTech Res 4:569–587Google Scholar
  53. Dodziuk H (2006) Cyclodextrins. In: Dodziuk H (ed) Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 1–30.  https://doi.org/10.1002/3527608982.ch1 CrossRefGoogle Scholar
  54. Donaldson L (2012) Absorbent nanosponges to treat oil spillages: nanotechnology. Mater Today 15:235.  https://doi.org/10.1016/s1369-7021(12)70108-6 CrossRefGoogle Scholar
  55. Dora CP, Trotta F, Kushwah V, Devasari N, Singh C, Suresh S, Jain S (2016) Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr Polym 137:339–349.  https://doi.org/10.1016/j.carbpol.2015.10.080 CrossRefGoogle Scholar
  56. Duchene D, Bochot A (2016) Thirty years with cyclodextrins. Int J Pharm 514:58–72.  https://doi.org/10.1016/j.ijpharm.2016.07.030 CrossRefGoogle Scholar
  57. Duchene D, Ponchel G, Wouessidjewe D (1999) Cyclodextrins in targeting application to nanoparticles. Adv Drug Deliv Rev 36:29–40.  https://doi.org/10.1016/s0169-409x(98)00053-2 CrossRefGoogle Scholar
  58. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701.  https://doi.org/10.1038/nrc1958 CrossRefGoogle Scholar
  59. Ejaz M, Yu H, Yan Y, Blake DA, Ayyala RS, Grayson SM (2011) Evaluation of redox-responsive disulfide cross-linked poly(hydroxyethyl methacrylate) hydrogels. Polymer 52:5262–5270.  https://doi.org/10.1016/j.polymer.2011.09.018 CrossRefGoogle Scholar
  60. Erdogar N, Esendagli G, Nielsen TT, Sen M, Oner L, Bilensoy E (2016) Design and optimization of novel paclitaxel-loaded folate-conjugated amphiphilic cyclodextrin nanoparticles. Int J Pharm 509:375–390.  https://doi.org/10.1016/j.ijpharm.2016.05.040 CrossRefGoogle Scholar
  61. Eslami M, Zare HR, Namazian M (2012) Thermodynamic parameters of electrochemical oxidation of l-dopa: experimental and theoretical studies. J Phys Chem B 116:12552–12557.  https://doi.org/10.1021/jp3054229 CrossRefGoogle Scholar
  62. Farrell D, Limaye S, Subramanian S (2006) Silicon nanosponge particles. US0,251,561A1Google Scholar
  63. Ferrari M (2005) Cancer nanotechnology: opportunity and challenges. Nat Rev Cancer 5:161–171.  https://doi.org/10.1038/nrc1566 CrossRefGoogle Scholar
  64. Ferro M, Castiglione F, Punta C, Melone L, Panzeri W, Rossi B, Trotta F, Mele A (2014) Anomalous diffusion of ibuprofen in cyclodextrin nanosponge hydrogels: an HR-MAS NMR study. Beilstein J Org Chem 10:2715–2723.  https://doi.org/10.3791/53769 CrossRefGoogle Scholar
  65. Ferro M, Castiglione F, Punta C, Melone L, Panzeri W, Rossi B, Trotta F, Mele A (2016) Transport properties of ibuprofen encapsulated in cyclodextrin nanosponge hydrogels: a proton HR-MAS NMR spectroscopy study. J Vis Exp 15(114)Google Scholar
  66. Friedrich RB, Kann B, Coradini K, Offerhaus HL, Beck RCR, Windbergs M (2015) Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. Eur J Pharm Sci 78:204–213.  https://doi.org/10.1016/j.ejps.2015.07.018 CrossRefGoogle Scholar
  67. Gabizon AA (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Investig 19:424–436.  https://doi.org/10.1081/cnv-100103136 CrossRefGoogle Scholar
  68. Galloway RL, Delisi M, Harth EM, Mawn LA (2014) A new paradigm for treatment of glaucoma. Conf Proc IEEE Eng Med Biol Soc 2014:6147–6150.  https://doi.org/10.1109/embc.2014.6945032 CrossRefGoogle Scholar
  69. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) The drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598.  https://doi.org/10.1016/s0959-8049(01)00171-x CrossRefGoogle Scholar
  70. Gidwani B, Vyas A (2014) Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B: Biointerfaces 114:130–137.  https://doi.org/10.1016/j.colsurfb.2013.09.035 CrossRefGoogle Scholar
  71. Gigliotti CL, Minelli R, Cavalli R, Occhipinti S, Barrera G, Pizzimenti S, Cappellano G, Boggio E, Conti L, Fantozzi R, Giovarelli M, Trotta F, Dianzani U, Dianzani C (2016) In vitro and in vivo therapeutic evaluation of camptothecin-encapsulated β-cyclodextrin nanosponges in prostate cancer. J Biomed Nanotechnol 12:114–127.  https://doi.org/10.1166/jbn.2016.2144 CrossRefGoogle Scholar
  72. Gilardi G, Trotta F, Cavalli R, Ferruti P, Ranucci E, Giovanna Di N, Roggero CM, Tumiatti V (2009) Cyclodextrin nanosponges as carrier for biocatalysts, and in the delivery and release of enzymes, proteins, vaccines and antibodies. WO2009149883A1Google Scholar
  73. Girek T, Ciesielski W (2010) Polymerization of β-cyclodextrin with maleic anhydride along with thermogravimetric study of polymers. J Incl Phenom Macrocycl Chem 68:1–7.  https://doi.org/10.1007/s10847-010-9778-4 CrossRefGoogle Scholar
  74. Goldspiel BR (1999) Paclitaxel compatibility with ethylene vinyl acetate bags. Ann Pharmacother 33:873–874.  https://doi.org/10.1345/aph.18328 CrossRefGoogle Scholar
  75. Guo L, Gao G, Liu X, Liu F (2008) Preparation and characterization of TiO2 nanosponge. Mater Chem Phys 111:322–325.  https://doi.org/10.1016/j.matchemphys.2008.04.016 CrossRefGoogle Scholar
  76. Guo J, Xiao Y, Lin Y, Crommen J, Jiang Z (2016) Effect of the crosslinker type on the enantioseparation performance of β-cyclodextrin functionalized monoliths prepared by the one-pot approach. J Chromatogr A 1467:288–296.  https://doi.org/10.1016/j.chroma.2016.05.078 CrossRefGoogle Scholar
  77. Hamada H, Ishihara K, Masuoka N, Mikuni K, Nakajima N (2006) Enhancement of water-solubility and bioactivity of paclitaxel using modified cyclodextrins. J Biosci Bioeng 102:369–371.  https://doi.org/10.1263/jbb.102.369 CrossRefGoogle Scholar
  78. Hariri G, Edwards AD, Merrill TB, Greenbaum JM, Ende AE, Harth E (2014) Sequential targeted delivery of paclitaxel and camptothecin using a cross-linked “nanosponge” network for lung cancer chemotherapy. Mol Pharm 11:265–275.  https://doi.org/10.1021/mp400432b CrossRefGoogle Scholar
  79. Hatefi A, Amsden B (2002) Camptothecin delivery methods. Pharm Res 19:1389–1399.  https://doi.org/10.1023/a:1020427227285 CrossRefGoogle Scholar
  80. He H, Chen S, Zhou J, Dou Y, Song L, Che L, Zhou X, Chen X, Jia Y, Zhang J, Li S, Li X (2013) Cyclodextrin derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials 34:5344–5358.  https://doi.org/10.1016/j.biomaterials.2013.03.068 CrossRefGoogle Scholar
  81. Hoffman A (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16.  https://doi.org/10.1016/j.addr.2012.11.004 CrossRefGoogle Scholar
  82. Hu CM, Fang RH, Copp J, Luk BT, Zhang L (2013) A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 8:336–340.  https://doi.org/10.1038/nnano.2013.54 CrossRefGoogle Scholar
  83. Huarte J, Espuelas S, Lai Y, He B, Tang J, Irache JM (2016) Oral delivery of camptothecin using cyclodextrin/poly(anhydride) nanoparticles. Int J Pharm 506:116–128.  https://doi.org/10.1016/j.ijpharm.2016.04.045 CrossRefGoogle Scholar
  84. Iohara D, Umezaki Y, Anraku M, Uekama K, Hirayama F (2016) In vitro and in vivo evaluation of hydrophilic c60(oh)10/2-hydroxypropyl-β-cyclodextrin nanoparticles as an antioxidant. J Pharm Sci 105:2959–2965.  https://doi.org/10.1016/j.xphs.2016.04.033 CrossRefGoogle Scholar
  85. Jain D, Gursalkar T, Bajaj A (2013) Nanosponges of an anticancer agent for potential treatment of brain tumors. Am J Neuroprotec Neuroregen 5:32–43.  https://doi.org/10.1166/ajnn.2013.1063 CrossRefGoogle Scholar
  86. Jeong SY, Park SJ, Yoon SM, Jung J, Woo HN, Yi SL, Song SY, Park HJ, Kim C, Lee JS, Lee JS, Choi EK (2009) Systemic delivery and preclinical evaluation of Au nanoparticle containing b-lapachone for radiosensitization. J Control Release 139:239–245.  https://doi.org/10.1016/j.jconrel.2009.07.007 CrossRefGoogle Scholar
  87. Kaur P, Rampal A, Singh Bedi PM, Bedi N (2015) Ternary inclusion complexes of rifaximin with β-cyclodextrin and sodium deoxycholate for solubility enhancement. Curr Drug Discov Technol 12:179–189.  https://doi.org/10.2174/1570163812666150817113230 CrossRefGoogle Scholar
  88. Lambert WS, Carlson BJ, van der Ende AE, Shih G, Dobish JN, Calkins DJ, Harth E (2015) Nanosponge-mediated drug delivery lowers intraocular pressure. Transl Vis Sci Technol 4:1.  https://doi.org/10.1167/tvst.4.1.1 CrossRefGoogle Scholar
  89. Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumours: principles, pitfalls and (pre-) clinical progress. J Control Release 161:175–187.  https://doi.org/10.1016/j.jconrel.2011.09.063 CrossRefGoogle Scholar
  90. Layre AM, Gref R, Richard J, Requier D, Chacun H, Appel M, Domb AJ, Couvreur P (2005) Nanoencapsulation of a crystalline drug. Int J Pharm 298:323–327.  https://doi.org/10.1016/j.ijpharm.2005.02.039 CrossRefGoogle Scholar
  91. Lee CL, Wu CC, Chiou H, Syu C, Huang C, Yang C (2011) Mesopourous platinum nanosponges as electrocatalysis for the oxygen reduction reaction in an acidic electrolyte. Int J Hydrog Energy 36:6433–6440.  https://doi.org/10.1016/j.ijhydene.2011.03.034 CrossRefGoogle Scholar
  92. Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D, Vavia P, Trotta F, Cavalli R (2013) Encapsulation of acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm 443:262–272.  https://doi.org/10.1016/j.ijpharm.2012.12.031 CrossRefGoogle Scholar
  93. Li D, Ma M (1998) Cyclodextrin polymer separation materials. WO1998022197A1Google Scholar
  94. Li DQ, Ma M (1999) Nanosponges: from inclusion chemistry to water purifying technology. ChemTech 29:31–37Google Scholar
  95. Li D, Ma M (2000) Nanosponges for water purification. Clean Prod Process 2:112–116.  https://doi.org/10.1007/s100980000061 CrossRefGoogle Scholar
  96. Liang W, Yang C, Nishijima M, Fukuhara G, Mori T, Mele A, Castiglione F, Caldera F, Trotta F, Inoue Y (2012) Cyclodextrin nanosponge-sensitized enantiodifferentiating photoisomerization of cyclooctene and 1,3-cyclooctadiene. Beilstein J Org Chem 8:1305–1311.  https://doi.org/10.3762/bjoc.8.149 CrossRefGoogle Scholar
  97. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection imaging and drug delivery. Nano Res 2:85–120.  https://doi.org/10.1007/s12274-009-9009-8 CrossRefGoogle Scholar
  98. Liu S, Chen X, Zhang Q, Wu W, Xin J, Li J (2014) Multifunctional hydrogels based on β-cyclodextrin with both biomineralization and anti-inflammatory properties. Carbohydr Polym 102:869–876.  https://doi.org/10.1016/j.carbpol.2013.10.076 CrossRefGoogle Scholar
  99. Lockhart JN, Stevens DM, Beezer DB, Kravitz A, Harth E (2015) Dual drug delivery of tamoxifen and quercetin: regulated metabolism for anticancer treatment with nanosponges. J Control Release 220:751–757.  https://doi.org/10.1016/j.jconrel.2015.08.052 CrossRefGoogle Scholar
  100. Loftsson T, Brewster M (1996) Pharmaceutical applications of cyclodextrins: drug solubilization and stabilization. J Pharm Pharmacol 85:1017–1025.  https://doi.org/10.1021/js950534b CrossRefGoogle Scholar
  101. Lu Z, Chen R, Fu R, Xiong J, Hu Y (2011) Cytotoxicity and inhibition of lipid peroxidation activity of resveratrol/cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 73:313–320.  https://doi.org/10.1007/s10847-011-0058-8 CrossRefGoogle Scholar
  102. Lundberg BB (2011) Preparation and characterization of polymeric pH-sensitive STEALTH nanoparticles for tumor delivery of a lipophilic prodrug of paclitaxel. Int J Pharm 408:208–212.  https://doi.org/10.1016/j.ijpharm.2011.01.061 CrossRefGoogle Scholar
  103. Luo X, Jia G, Song H, Liu C, Wu G, Li X (2014) Promoting antitumor activities of hydroxycamptothecin by encapsulation into acid-labile nanoparticles using electrospraying. Pharm Res 31:46–59.  https://doi.org/10.1007/s11095-013-1130-4 CrossRefGoogle Scholar
  104. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284.  https://doi.org/10.1016/s0168-3659(99)00248-5 CrossRefGoogle Scholar
  105. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79.  https://doi.org/10.1016/j.addr.2012.10.002 CrossRefGoogle Scholar
  106. Malingre MM, Beijnen JH, Schellens JH (2001) Oral delivery of taxanes. Investig New Drugs 19:155–162.  https://doi.org/10.1023/a:1010635000879 CrossRefGoogle Scholar
  107. Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Shreelakshmi C, Reddy VS, Devaprasad RB (2011) Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig J Nanomater Biostruct 6:181–186Google Scholar
  108. Mamba BB, Krause RW, Malefetse TJ, Mhlanga SD, Sithole SP, Salipira KL, Nxumalo EN (2007) Removal of geosmin and 2-methylisoborneol (2-MIB) in water from Zuikerbosch water treatment plant (Rand Water) using β-cyclodextrin polyurethane. Water SA 33:223–228.  https://doi.org/10.4314/wsa.v33i2.49066 CrossRefGoogle Scholar
  109. Mamba BB, Krause RW, Malefetse TJ, Gericke G, Sithhole SP (2008) Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation. Water SA 34:657–660.  https://doi.org/10.2166/aqua.2009.039 CrossRefGoogle Scholar
  110. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392Google Scholar
  111. Mele A, Castiglione F, Malpezzi L, Ganazzoli F, Raffaini G, Trotta F, Rossi B, Fontana A, Giunch G (2011) HR-MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in β-CD nanosponges. J Incl Phenom Macrocycl Chem 69:403–409.  https://doi.org/10.1007/s10847-010-9772-x CrossRefGoogle Scholar
  112. Mihailiasa M, Caldera F, Li J, Peila R, Ferri A, Trotta F (2016) Preparation of functionalized cotton fabrics by means of melatonin loaded β-cyclodextrin nanosponges. Carbohydr Polym 142:24–30.  https://doi.org/10.1016/j.carbpol.2016.01.024 CrossRefGoogle Scholar
  113. Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, Park RW, Kim IS, Jeong SY, Kim K, Kwon IC (2008) Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 127:208–218.  https://doi.org/10.1016/j.jconrel.2008.01.013 CrossRefGoogle Scholar
  114. Minelli R, Cavalli R, Ellis L, Pettazzoni P, Trotta F, Ciamporcero E, Barrera G, Fantozzi R, Dianzani C, Pili R (2012) Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. Eur J Pharm Sci 47:686–694.  https://doi.org/10.1016/j.ejps.2012.08.003 CrossRefGoogle Scholar
  115. Modi A, Tayade P (2007) A comparative solubility enhancement profile of valdecoxib with different solubilization approaches. Indian J Pharm Sci 69:427–430.  https://doi.org/10.4103/0250-474x.33156 CrossRefGoogle Scholar
  116. Mognetti B, Barberis A, Marino S, Berta G, Francia SD, Trotta F, Cavalli R (2012) In vitro enhancement of anticancer activity of paclitaxel by a cremophor free cyclodextrin-based nanosponge formulation. J Incl Phenom Macrocycl Chem 74:201–210.  https://doi.org/10.1007/s10847-011-0101-9 CrossRefGoogle Scholar
  117. Mohtar N, Taylor KM, Sheikh K, Somavarapu S (2016) Design and development of dry powder sulfobutylether-β-cyclodextrin complex for pulmonary delivery of fisetin. Eur J Pharm Biopharm 6411:30906–30907.  https://doi.org/10.1016/j.ejpb.2016.11.036 CrossRefGoogle Scholar
  118. Moreira MP, Andrade GR, de Araujo MV, Kubota T, Gimenez IF (2016) Ternary cyclodextrin polyurethanes containing phosphate groups: synthesis and complexation of ciprofloxacin. Carbohydr Polym 151:557–564.  https://doi.org/10.1016/j.carbpol.2016.05.101 CrossRefGoogle Scholar
  119. Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A, Loftsson T (2012) Cyclodextrin-based nanogel for pharmaceutical applications. Int J Pharm 428:152–163.  https://doi.org/10.1016/j.ijpharm.2012.02.038 CrossRefGoogle Scholar
  120. Mu L, Feng SS (2003) A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 86:33–48.  https://doi.org/10.1016/s0168-3659(02)00320-6 CrossRefGoogle Scholar
  121. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE (2014) Curcumin nano formulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35:3365–3383.  https://doi.org/10.1016/j.biomaterials.2013.12.090 CrossRefGoogle Scholar
  122. Osmani RA, Aloorkar NH, Kulkarni AS, Kulkarni PK, Hani U, Thirumaleshwar S, Bhosale RR (2015a) Novel cream containing microsponges of anti-acne agent: formulation development and evaluation. Curr Drug Deliv 12:504–516.  https://doi.org/10.2174/1567201812666150212122421 CrossRefGoogle Scholar
  123. Osmani RA, Bhosale RR, Hani U, Vaghela R, Kulkarni PK (2015b) Cyclodextrin based nanosponges: impending carters in drug delivery and nanotherapeutics. Curr Drug Ther 10:3–19.  https://doi.org/10.2174/157488551001150825095513 CrossRefGoogle Scholar
  124. Osmani RA, Hani U, Bhosale RR, Kulkarni PK, Shanmuganathan S (2016a) Nanosponge carriers- an archetype swing in cancer therapy: a comprehensive review. Curr Drug Targets 18:108–118.  https://doi.org/10.2174/1389450116666151001105449 CrossRefGoogle Scholar
  125. Osmani RAM, Kulkarni PK, Shanmuganathan S, Hani U, Srivastava A, Prerana M, Shinde CG, Bhosale RR (2016b) A 32 full factorial design for development and characterization of a nanosponge-based intravaginal in situ gelling system for vulvovaginal candidiasis. RSC Adv 6:18737–18750.  https://doi.org/10.1039/c5ra26218f CrossRefGoogle Scholar
  126. Ouerghemmi S, Degoutin S, Tabary N, Cazaux F, Maton M, Gaucher V, Janus L, Neut C, Chai F, Blanchemain N, Martel B (2016) Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex. Int J Pharm 513:483–495.  https://doi.org/10.1016/j.ijpharm.2016.09.060 CrossRefGoogle Scholar
  127. Pando D, Matos M, Gutierrez G, Pazos C (2015) Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf B: Biointerfaces 128:398–404.  https://doi.org/10.1016/j.colsurfb.2015.02.037 CrossRefGoogle Scholar
  128. Park K (2010) Efficient oral delivery of paclitaxel using cyclodextrin complexes. J Control Release 145:1.  https://doi.org/10.1016/j.jconrel.2010.05.010 CrossRefGoogle Scholar
  129. Peltier S, Oger JM, Lagarce F, Couet W, Benoit JP (2006) Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res 23:1243–1250.  https://doi.org/10.1007/s11095-006-0022-2 CrossRefGoogle Scholar
  130. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46:2–18.  https://doi.org/10.4143/crt.2014.46.1.2 CrossRefGoogle Scholar
  131. Puiu M, Babaligea I, Olmazu C, Raducan A, Oancea D (2010) Peroxidase-mediated oxidation of L-DOPA: a kinetic approach. Biochem Eng J 52:248–254.  https://doi.org/10.1016/j.bej.2010.08.017 CrossRefGoogle Scholar
  132. Radi A, Eissa S (2011) Electrochemical study of indapamide and its complexation with β-cyclodextrin. J Incl Phenom Macrocycl Chem 71:95–102.  https://doi.org/10.1007/s10847-010-9906-1 CrossRefGoogle Scholar
  133. Raja CHNV, Kumar GK, Kotapati A (2013) Fabrication and evaluation of ciprofloxacin loaded nanosponges for sustained release. Int J Res Pharm Nanosci 2:1–9CrossRefGoogle Scholar
  134. Rajeswari C, Alka A, Javed A, Khar R (2005) Cyclodextrins in drug delivery: an update review. AAPS Pharm Sci Tech 6:E329–E357.  https://doi.org/10.1208/pt060243 CrossRefGoogle Scholar
  135. Ramirez-Ambrosi M, Caldera F, Trotta F, Berrueta LA, Gallo B (2014) Encapsulation of apple polyphenols in β-CD nanosponges. J Incl Phenom Macrocycl Chem 80:85–92.  https://doi.org/10.1007/s10847-014-0393-7 CrossRefGoogle Scholar
  136. Rao MR, Bhingole RC (2015) Nanosponge-based pediatric-controlled release dry suspension of gabapentin for reconstitution. Drug Dev Ind Pharm 41:2029–2036.  https://doi.org/10.3109/03639045.2015.1044903 CrossRefGoogle Scholar
  137. Rao MR, Shirsath C (2017) Enhancement of bioavailability of non-nucleoside reverse transciptase inhibitor using nanosponges. AAPS PharmSciTech 18:1728–1738.  https://doi.org/10.1208/s12249-016-0636-6 CrossRefGoogle Scholar
  138. Rao M, Bajaj A, Khole I, Munjapara G, Trotta F (2013) In vitro and in vivo evaluation of beta-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem 77:135–145.  https://doi.org/10.1007/s10847-012-0224-7 CrossRefGoogle Scholar
  139. Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS (2016) Resveratrol as an anticancer agent: a review. Crit Rev Food Sci Nutr 1:1–20.  https://doi.org/10.1080/10408398.2016.1263597
  140. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine: challenges and perspectives. Angew Chem Int Ed Eng 48:872–897.  https://doi.org/10.1002/anie.200802585 CrossRefGoogle Scholar
  141. Rossi B, Fontana A, Giarola M, Mariotto G, Mele A, Punta C, Melone L, Toraldo F, Trotta F (2014) Glass-like dynamics of new cross-linked polymeric systems: behavior of the Boson peak. J Non-Cryst Solids 401:73–77.  https://doi.org/10.1016/j.jnoncrysol.2014.01.016 CrossRefGoogle Scholar
  142. Sadowski Z (2010) Biosynthesis and applications of silver and gold nanoparticles. In: Perez DP (ed) Silver nanoparticles. InTech, Croatia, pp 257–276.  https://doi.org/10.5772/8508 CrossRefGoogle Scholar
  143. Sagnella SM, Gong X, Moghaddam MJ, Conn CE, Kimpton K, Waddington LJ, Krodkiewska I, Drummond CJ (2011) Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents. Nanoscale 3:919–924.  https://doi.org/10.1039/c0nr00781a CrossRefGoogle Scholar
  144. Sapino S, Carlotti ME, Caron G, Ugazio E, Cavalli R (2009) In silico design, photostability and biological properties of the complex resveratrol/hydroxypropylbeta-cyclodextrin. J Incl Phenom Macrocycl Chem 63:171–180.  https://doi.org/10.1007/s10847-008-9504-7 CrossRefGoogle Scholar
  145. Saxena S, Nacht S (2005) Polymeric porous delivery systems: Polytrap® and Microsponge®. In: Rosen MR (ed) Delivery system handbook for personal care and cosmetic products: technology, applications and formulations. William Andrew Publishing, New York, pp 333–351.  https://doi.org/10.1016/b978-081551504-3.50021-3 CrossRefGoogle Scholar
  146. Seglie L, Martina K, Devecchi M, Roggero C, Trotta F, Scariot V (2011) The effects of 1-MCP in cyclodextrin based nanosponges to improve the vase life of Dianthus caryophyllus cut flowers. Postharvest Biol Technol 59:200–205.  https://doi.org/10.1016/j.postharvbio.2010.08.012 CrossRefGoogle Scholar
  147. Seglie L, Devecchi M, Trotta F, Scariot V (2013) β-Cyclodextrin-based nanosponges improve 1-MCP efficacy in extending the postharvest quality of cut flowers. Sci Hortic 159:162–165.  https://doi.org/10.1016/j.scienta.2013.05.019 CrossRefGoogle Scholar
  148. Semalty M, Panchpuri M, Singh D, Semalty A (2014) Cyclodextrin inclusion complex of racecadotril: effect of drug-β- cyclodextrin ratio and the method of complexation. Curr Drug Discov Technol 11:154–161.  https://doi.org/10.2174/15701638113106660043 CrossRefGoogle Scholar
  149. Setijadi E, Tao L, Liu J, Jia Z, Boyer C, Davis TP (2009) Biodegradable star polymers functionalized with β-cyclodextrin inclusion complexes. Biomacromolecules 10:2699–2707.  https://doi.org/10.1021/bm900646g CrossRefGoogle Scholar
  150. Sharma R, Roderick B, Pathak K (2011) Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel. Ind J Pharm Educ Res 45:25–31Google Scholar
  151. Shende PK, Trotta F, Gaud RS, Deshmukh K, Cavalli R, Biasizzo M (2012) Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with beta-cyclodextrin and inclusion complexes of ASA with PMDA crosslinked beta-cyclodextrin nanosponges. J Incl Phenom Macrocycl Chem 74:447–454.  https://doi.org/10.1007/s10847-012-0140-x CrossRefGoogle Scholar
  152. Shende P, Deshmukh K, Trotta F, Caldera F (2013) Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia. Int J Pharm 456:95–100.  https://doi.org/10.1016/j.ijpharm.2013.08.012 CrossRefGoogle Scholar
  153. Shende P, Kulkarni YA, Gaud RS, Deshmukh K, Cavalli R, Trotta F, Caldera F (2015a) Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. J Pharm Sci 104:1856–1863.  https://doi.org/10.1002/jps.24416 CrossRefGoogle Scholar
  154. Shende PK, Gaud RS, Bakal R, Patil D (2015b) Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf B: Biointerfaces 136:105–110.  https://doi.org/10.1016/j.colsurfb.2015.09.002 CrossRefGoogle Scholar
  155. Shete HK, Selkar N, Vanage GR, Patravale VB (2014) Tamoxifen nanostructured lipid carriers: enhanced in vivo antitumor efficacy with reduced adverse drug effects. Int J Pharm 468:1–14.  https://doi.org/10.1016/j.ijpharm.2014.03.056 CrossRefGoogle Scholar
  156. Shiralipour R, Larki A (2017) Pre-concentration and determination of tartrazine dye from aqueous solutions using modified cellulose nanosponges. Ecotoxicol Environ Saf 135:123–129.  https://doi.org/10.1016/j.ecoenv.2016.09.038 CrossRefGoogle Scholar
  157. Skinner SA, Tutton PJ, O’Brien PE (1990) Microvascular architecture of experimental co-tumors in the rat. Cancer Res 50:2411–2417Google Scholar
  158. Skogar O, Lokk J (2016) Pain management in patients with Parkinson’s disease: challenges and solutions. J Multidiscip Healthc 9:469–479.  https://doi.org/10.2147/jmdh.s105857 CrossRefGoogle Scholar
  159. Stevens DM, Glimore KA, Harth E (2014) An assessment of nanosponges for intravenous and oral drug delivery of BCS class-IV drugs: drug delivery kinetics and solubilization. Polym Chem 5:3551–3554.  https://doi.org/10.1039/c4py00207e CrossRefGoogle Scholar
  160. Subramanian S, Singireddy A, Krishnamoorthy K, Rajappan M (2012) Nanosponges: a novel class of drug delivery system- review. J Pharm Pharm Sci 15:103–111.  https://doi.org/10.18433/j3k308 CrossRefGoogle Scholar
  161. Surapaneni MS, Das SK, Das NG (2012) Designing paclitaxel drug delivery systems aimed at improved patient outcomes: current status and challenges. ISRN Pharmacol 2012:623139.  https://doi.org/10.5402/2012/623139 CrossRefGoogle Scholar
  162. Swaminathan S, Vavia P, Trotta F, Torne SJ (2007) Formulation of beta-cyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem 57:89–94.  https://doi.org/10.1007/s10847-006-9216-9 CrossRefGoogle Scholar
  163. Swaminathan S, Vavia P, Trotta F, Cavalli R, Ferruti P, Ranucci E, Gerges I (2009) Release modulation and conformational stabilization of a model protein by use of swellable nanosponges of β- cyclodextrin. First European cyclodextrin conference, Aalborg, Denmark. p 79Google Scholar
  164. Swaminathan S, Cavalli R, Trotta F, Ferruti P, Ranucci E, Gerges I, Manfredi A, Marinotto D, Vavia PR (2010a) In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of beta-cyclodextrin. J Incl Phenom Macrocycl Chem 68:183–191.  https://doi.org/10.1007/s10847-010-9765-9 CrossRefGoogle Scholar
  165. Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, Trotta M, Zara G, Cavalli R (2010b) Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 74:193–201.  https://doi.org/10.1016/j.ejpb.2009.11.003 CrossRefGoogle Scholar
  166. Swaminathan S, Vavia PR, Trotta F, Cavalli R (2013) Nanosponges encapsulating dexamethasone for ocular delivery: formulation design, physicochemical characterization, safety and corneal permeability assessment. J Biomed Nanotechnol 9:998–1007.  https://doi.org/10.1166/jbn.2013.1594 CrossRefGoogle Scholar
  167. Swaminathan S, Cavalli R, Trotta F (2016) Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:579–601.  https://doi.org/10.1002/wnan.1384 CrossRefGoogle Scholar
  168. Taka AL, Pillay K, Mbianda XY (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohydr Polym 159:94–107.  https://doi.org/10.1016/j.carbpol.2016.12.027
  169. Tang S, Kong L, Ou J, Liu Y, Li X, Zou H (2006) Application of cross-linked beta-cyclodextrin polymer for adsorption of aromatic amino acids. J Mol Recognit 19:39–48.  https://doi.org/10.1002/jmr.756
  170. Taniguchi N (1974) On the basic concept of nanotechnology. Proceedings of international conference on precision engineering (ICPE), Tokyo, Japan. pp 18–23Google Scholar
  171. Tonnesen HH, Masson M, Loftsson T (2002) Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244:127–135.  https://doi.org/10.1016/s0378-5173(02)00323-x CrossRefGoogle Scholar
  172. Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R (2010) Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv 17:419–425.  https://doi.org/10.3109/10717541003777233 CrossRefGoogle Scholar
  173. Torne S, Darandale S, Vavia P, Trotta F, Cavalli R (2013) Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm Dev Technol 18:619–625.  https://doi.org/10.3109/10837450.2011.649855 CrossRefGoogle Scholar
  174. Tripodo G, Wischke C, Neffe AT, Lendlein A (2013) Efficient synthesis of pure monotosylated beta-cyclodextrin and its dimers. Carbohydr Res 381:59–63.  https://doi.org/10.1016/j.carres.2013.08.018 CrossRefGoogle Scholar
  175. Trotta F (2011) Cyclodextrin nanosponges and their applications. In: Bilensoy E (ed) Cyclodextrins in pharmaceutics, cosmetics and biomedicine, current and future industrial applications. Wiley, Hoboken, pp 323–342.  https://doi.org/10.1002/9780470926819.ch17 CrossRefGoogle Scholar
  176. Trotta F, Cavalli R (2009) Characterization and application of new hyper-cross-linked cyclodextrins. Compos Interfaces 16:39–48.  https://doi.org/10.1163/156855408x379388 CrossRefGoogle Scholar
  177. Trotta F, Cavalli R (2013) New glutathione bio-responsive cyclodextrin nanosponges. Cyclodextrin News 27:2Google Scholar
  178. Trotta F, Tumiatti W (2003) Cross-linked polymers based on cyclodextrins for removing polluting agents. WO03/085002 A1Google Scholar
  179. Trotta F, Wander T (2005) Cross-linked polymers based on cyclodextrins for removing polluting agents. WO2003/085002, US20050154198A1Google Scholar
  180. Trotta F, Cavalli R, Tumiatti V, Zerbinati O, Roggero C, Vallero R (2007) Ultrasound assisted synthesis of cyclodextrin based nanosponges. EP1786841A1Google Scholar
  181. Trotta F, Tumiatti V, Cavalli R, Roggero C, Mognetti B, Berta G (2009) Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. WO 2009/003656 A1Google Scholar
  182. Trotta F, Zanetti M, Cavalli R (2012) Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 8:2091–2099.  https://doi.org/10.3762/bjoc.8.235 CrossRefGoogle Scholar
  183. Trotta F, Caldera F, Cavalli R, Soster M, Riedo C, Biasizzo M, Uccello Barretta G, Balzano F, Brunella V (2016) Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: perspectives for the treatment of Parkinson’s disease. Expert Opin Drug Deliv 13:1671–1680.  https://doi.org/10.1080/17425247.2017.1248398 CrossRefGoogle Scholar
  184. Tungala K, Adhikary P, Krishnamoorthi S (2013) Trimerization of β-cyclodextrin through the click reaction. Carbohydr Polym 95:295–298.  https://doi.org/10.1016/j.carbpol.2013.02.074 CrossRefGoogle Scholar
  185. Vasconcelos DA, Kubota T, Santos DC, Araujo MV, Teixeira Z, Gimenez IF (2016) Preparation of Aun quantum clusters with catalytic activity in β-cyclodextrin polyurethane nanosponges. Carbohydr Polym 136:54–62.  https://doi.org/10.1016/j.carbpol.2015.09.010 CrossRefGoogle Scholar
  186. Vavia PR, Swaminathan S, Trotta F, Cavalli R (2006) Applications of nanosponges in drug delivery. In: Proceedings XIII international cyclodextrin symposium, Turin, Italy. p 207Google Scholar
  187. Vyas SP, Khar RK (2004) Targeted and controlled drug delivery- novel carrier systems, 1st edn. CBS Publication, New Delhi, p 331Google Scholar
  188. Vyas A, Sharma A (2012) Development and characterization of cyclodextrin nanosponges: a novel drug delivery system for delivery of poorly soluble drugs. Bull Pharm Res 1:9Google Scholar
  189. Vyas A, Saraf S, Saraf S (2008) Cyclodextrin based novel drug delivery systems. J Incl Phenom Macrocycl Chem 62:23–42.  https://doi.org/10.1007/s10847-008-9456-y CrossRefGoogle Scholar
  190. Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62:90–99.  https://doi.org/10.1016/j.phrs.2010.03.005 CrossRefGoogle Scholar
  191. Wang MD, Shin DM, Simons JW, Nie S (2007) Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 7:833–837.  https://doi.org/10.1586/14737140.7.6.833 CrossRefGoogle Scholar
  192. Wen MM, El-Salamouni NS, El-Refaie WM, Hazzah HA, Ali MM, Tosi G, Farid RM, Blanco-Prieto MJ, Billa N, Hanafy AS (2016) Nanotechnology-based drug delivery systems for Alzheimer’s disease management: technical, industrial, and clinical challenges. J Control Release 245:95–107.  https://doi.org/10.1016/j.jconrel.2016.11.025 CrossRefGoogle Scholar
  193. Wong VN, Fernando G, Wagner AR, Zhang J, Kinsel GR, Zauscher S, Dyer DJ (2009) Separation of peptides with polyionic nanosponges for MALDI-MS analysis. Langmuir 25:1459–1465.  https://doi.org/10.1021/la802723r CrossRefGoogle Scholar
  194. Xu D, Wang L, Gourevich D, Kabha E, Arditti F, Athamna M, Cochran S, Melzer A, Gnaim JM (2014) Synthesis and inclusion study of a novel γ-cyclodextrin derivative as a potential thermo-sensitive carrier for doxorubicin. Chem Pharm Bull (Tokyo) 62:627–635.  https://doi.org/10.1248/cpb.c13-00950 CrossRefGoogle Scholar
  195. Yang CY, Liao TC, Shuai HH, Shen TL, Yeh JA, Cheng CM (2012) Micropatterning of mammalian cells on inorganic-based nanosponges. Biomaterials 33:4988–4997.  https://doi.org/10.1016/j.biomaterials.2012.03.071 CrossRefGoogle Scholar
  196. Zhang T, Luo J, Fu Y, Li H, Ding R, Gong T, Zhang Z (2016) Novel oral administrated paclitaxel micelles with enhanced bioavailability and antitumor efficacy for resistant breast cancer. Colloids Surf B: Biointerfaces 150:89–97.  https://doi.org/10.1016/j.colsurfb.2016.11.024 CrossRefGoogle Scholar
  197. Zhao Y, Alakhova DY, Kim JO, Bronich TK, Kabanov AV (2013) A simple way to enhance Doxil® therapy: drug release from liposomes at the tumor site by amphiphilic block copolymer. J Control Release 168:61–69.  https://doi.org/10.1016/j.jconrel.2013.02.026 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Riyaz Ali Osmani
    • 1
  • Parthasarathi Kulkarni
    • 1
  • Shringari Manjunatha
    • 2
  • Vishakante Gowda
    • 1
  • Umme Hani
    • 3
  • Rudra Vaghela
    • 1
  • Rohit Bhosale
    • 1
  1. 1.Department of Pharmaceutics, JSS College of PharmacyJSS UniversityMysuruIndia
  2. 2.Defence Food Research Laboratory (DFRL), Ministry of DefenceMysuruIndia
  3. 3.Department of Pharmaceutics, College of PharmacyKing Khalid UniversityAsir-AbhaSaudi Arabia

Personalised recommendations