Nanobiosensors for Detection of Micropollutants

Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 14)

Abstract

The integration of nanotechnology in the sensor technology open ups the possibility for a wide variety of applications, such as micropollutants detection. Micropollutants are emerging as a new challenge to the scientific community, where the growing number of pollutants requires the development of innovative analytical devices that are precise, sensitive, specific, rapid, and easy-to-use to meet the increasing demand for environmental pollution control. Nanobiosensors, as a powerful alternative to conventional analytical techniques, enable the highly sensitive, real-time, and high-frequency monitoring of micropollutants without extensive sample preparation. Since nanobiosensor holds the possibility of detecting and manipulating atoms and molecules using nanodevices, which have led to the development of biosensors that interact with extremely small molecules that need to be analyzed, such as micropollutants.

This chapter reviews important advances in nanobiosensor structures based functionalized nanoparticles, nanotubes, and nanowires with biorecognition materials (e.g., enzymes, aptamers, DNAzymes, antibodies and whole cells) that facilitate the increasing application of nanobiosensors for detection of micropulutants. Nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been actively studied for nanobiosensors. The use of nanoparticle-functionalized surfaces can drastically boost the specificity of the detection system, that make nanobiosensor becomes more refined and reliable. It will eventually make small devices for rapid screening of a wide variety of micropollutants with very low sensitivity and selectivity at low cost, which has become a new interdisciplinary frontier between chemical or biological detection, material science, and chemistry.

Keywords

Nanotechnology Nanosensor Nanobiosensors Nanomaterials Micropollutant Water Soil 

Notes

Acknowledgements

The author gratefully thank the DRPM, Ministry of Research, Technology and Higher Education, the Republic of Indonesia for supporting this work via International Research Collaboration and Scientific Publication 2017 (Hibah Penelitian Kerjasama Luar Negeri dan Publikasi Internasional 2017) and thank to Prof. M. Ahmad, FST USIM Malaysisa, for valuable discussion regarding this work.

References

  1. Abbas A, Brimer A, Slocik JM, Tian L, Naik RR, Singamaneni S (2013) Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal Chem 85(8):3977–3983Google Scholar
  2. Agrawal S, Prajapati R (2012) Nanosensors and their pharmaceutical applications: a review. Int J Pharm Sci Technol 4:1528–1535Google Scholar
  3. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800Google Scholar
  4. Astruc D, Chardac F, Dendritic F (2001) Dendritic catalysts and dendrimers in catalysis. Chem Rev 101:2991–3024Google Scholar
  5. Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Shirzadmehr A (2013) Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sensors Actuators B 186:451–460Google Scholar
  6. Baioni AP, Vidotti M, Fiorito PA, de Torresi SIC (2008) Copper hexacyanoferrete nanoparticles modified electrode. J Electroanal Chem 622:219–224Google Scholar
  7. Carrillo-Carrión C, Simonet BM, Valcárcel M (2009) Carbon nanotube–quantum dot nanocomposites as new fluorescence nanoparticles for the determination of trace levels of PAHs in water. Anal Chim Acta 652:278–284Google Scholar
  8. Chen JR, Miao YQ, He NY, Wu XH, Li SJ (2004) Nanotechnology and biosensors. Biotechnol Adv 22(7):505–518Google Scholar
  9. Chen L, Gu B, Zhu G, Wu Y, Liu S, Xu C (2008) Electron transfer properties and electrocatalytic behavior of tyrosinase on ZnO nanorod. J Electroanal Chem 617(1):7–13Google Scholar
  10. Chen H, Hu W, Li CM (2015) Colorimetric detection of mercury(II) based on 2,2-bipyridyl inducedquasi-linear aggregation of gold nanoparticles. Sensors Actuators B 215:421–427Google Scholar
  11. Cheng ZH, Li G, Liu MM (2015) Metal-enhanced fluorescence effect of Ag and Au nanoparticles modified with rhodamine derivative in detecting Hg2+. Sensors Actuators B 212:495–504Google Scholar
  12. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668Google Scholar
  13. Concejero MA, Galve R, Herradon B, Gonzalez MJ, Frutos M (2001) Feasibility of high-performance immunochromatography as an isolation method for PCBs and other dioxin-like compounds. Anal Chem 73:3119–3125Google Scholar
  14. Crooks RM (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190Google Scholar
  15. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292Google Scholar
  16. Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry 9(16):3732–3739Google Scholar
  17. De Dios AE, Diaz Garcia ME (2010) Multifunctional nanoparticles: analytical prospects. Anal Chim Acta 666(1–2):1–22Google Scholar
  18. de la Escosura-Muniz A, Ambrosi A, Merkoci A (2008) Electrochemical analysis with nanoparticle based biosystems. Trends Anal Chem 27:568–584Google Scholar
  19. de la Rica R, Mendoza E, Lechuga LM, Matsui H (2008) Label-free pathogen detection with sensor chips assembled from peptide nanotubes. Angew Chem Int Ed 47(50):9752–9755Google Scholar
  20. Di Francia G, Quercia L, La Ferrara S, Manzo S, Chiavarini S, Cerullo F, De Filippo F, La Ferrara V, Maddalena P, Vitiello R (1999) Second workshop on chemical sensors & biosensors. Rome, p 18Google Scholar
  21. Ding N, Zhao H, Peng W, He Y, Zhou Y, Yuan L, Zhang Y (2012) A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids Surf A Physicochem Eng Asp 395:161–167Google Scholar
  22. Du J, Zhu B, Chen X (2013) Urine for plasmonic nanoparticle-based colorimetric detection of mercury ion. Small 9:4104–4111Google Scholar
  23. Duong HD, Reddy CVG, Rhee JI, Vo-Dinh T (2011) Amplification of fluorescence emission of CdSe/ZnS QDs entrapped in a sol–gel matrix, a new approach for detection of trace level of PAHs. Sensors Actuators B 157:139–145Google Scholar
  24. El-Deab MS, Ohsaka T (2002) An extraordinary electrocatalytic reduction of oxigen on gold nanoparticles-electrodeposited gold electrode. Electrochem Commun 4:288–292Google Scholar
  25. Endo T, Okuyama A, Matsubara Y, Nishi K, Kobayashi M, Yamamura S, Morita Y, Takamura Y, Mizukami H, Tamiya E (2005) Fluorescence-based assay with enzyme amplification on a micro-flow immunosensor chip for monitoring coplanar polychlorinated biphenyls. Anal Chim Acta 531:7–13Google Scholar
  26. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C (2005) Cubosome dispersions as delivery systems for percutaneuos administration of indomethacin. Pharm Res 22:2163–2173Google Scholar
  27. Fang B, Kim JH, Yu JS (2008) Colloid-imprinted carbon with superb nanostructure as an efficient cathode electrocatalyst support in proton exchange membrane fuel cell. Electrochem Commun 10(4):659–668Google Scholar
  28. Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors Actuators B 161:880–885Google Scholar
  29. Foster LE (2006) Medical nanotechnology: science, innovation, and opportunity. Pearson Education, Upper Saddle RiverGoogle Scholar
  30. Fu X, Chen L, Choo J (2017) Optical nanoprobes for ultrasensitive immunoassay. Anal Chem 89(1):124–137Google Scholar
  31. German JB, Smilowitz JT, Zivkovic AM (2006) Lipoproteins: when size really matters. Curr Opin Coll Interf Sci 11(2):171–183Google Scholar
  32. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7:3818–3821Google Scholar
  33. Gong J, Zhou T, Song D, Zhang L (2010) Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury (II). Sensors Actuators B 150:491–497Google Scholar
  34. Gooding JJ, Wibowo RJ, Liu Q, Yang W, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125(30):9006–9007Google Scholar
  35. Guilbault GG, Pravda M, Kreuzer M (2004) Biosensors – 42 years and counting. Anal Lett 37:14481–14496Google Scholar
  36. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598(2):181–192Google Scholar
  37. Guo J, Chai Y, Yuan R, Song Z, Zou Z (2011) Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: application to lead content determination in environmental samples. Sensors Actuators B 155:639–645Google Scholar
  38. Haruyama T (2003) Micro- and nanobiotechnology for biosensing cellular responses. Adv Drug Dell Rev 55(3):393–401Google Scholar
  39. Haun JB, Yoon TJ, Lee H, Weissleder R (2010) Magnetic nanoparticle biosensors. Nanomed Nanobiotechnol 2(3):291–304Google Scholar
  40. He B, Morrow TJ, Keating CD (2008) Nanowire sensors for multiplexed detection of biomolecules. Curr Opin Chem Biol 2(5):522–528Google Scholar
  41. Hochella MF (2002) Nanoscience and technology the next revolution in the earth sciences. Earth Planet Sci Lett 203:593–605Google Scholar
  42. Hong S, Kang T, Oh S, Moon J, Choi I, Choi K, Yi J (2008) Label-free sensitive optical detection of polychlorinated biphenyl (PCB) in an aqueous solution based on surface plasmon resonance measurements. Sensors Actuators B 134:300–306Google Scholar
  43. Hrapovic S (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76(4):1083–1088Google Scholar
  44. Huang Y, Zhang W, Xiao H, Li G (2005) An electrochemical investigation of glucose oxidase at a CdS nanoparticlesmodified electrode. Biosens Bioelectron 21(5):817–821Google Scholar
  45. Huang H, Li L, Zhou GH, Liu ZH, Ma Q, Feng YQ, Zeng GP, Tinnefeldc P, He ZK (2011) Visual detection of melamine in milk samples based on label-free and labelled gold nanoparticles. Talanta 85:1013–1019Google Scholar
  46. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58Google Scholar
  47. Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Exp Rev Mol Diagn 3(2):153–161Google Scholar
  48. Jianrong C, Yuqing M, Nongyue H, Xiaohua W (2004) Nanotechnology and biosensors. Biotechnol Adv 22:505–518Google Scholar
  49. Jin RC, Wu GS, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125(6):1643–1654Google Scholar
  50. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):867–871.  https://doi.org/10.1038/nmat2546 Google Scholar
  51. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16(1–2):19–44Google Scholar
  52. Kim YR (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25(10):2366–2369Google Scholar
  53. Ko S, Gunasekaran S, Yu J (2010) Self-indicating nanobiosensor for detection of 2,4-dinitrophenol. Food Control 21:155–161Google Scholar
  54. Kumar VV, Anthony SP (2014) Silver nanoparticles based selective colorimetric sensor for Cd2+, Hg2+ and Pb2+ ions: tuning sensitivity and selectivity using co-stabilizingagents. Sensors Actuators B 191:31–36Google Scholar
  55. Kuswandi B, Mascini M (2005) Enzyme inhibition based biosensors for environmental monitoring. Curr Enzym Inhib 1:11–21Google Scholar
  56. Kuswandi B, Swandari NW (2007) Simple and sensitive flow injection optical fibre biosensor based on immobilised enzyme for monitoring of pesticides. Senses Trans 76:978–986Google Scholar
  57. Kuswandi B, Fikriyah CI, Gani AA (2008) An optical fiber biosensor for chlorpyrifos using a single sol–gel film containing acetylcholinesterase and bromothymol blue. Talanta 74:613–622Google Scholar
  58. Laschi S, Mascini M, Scortichin G, Fraanek M, Mascini M (2003) Polychlorinated biphenyls (PCBs) detection in food samples using an electrochemical immunosensor. J Agric Food Chem 51:1816–1822Google Scholar
  59. Lee CH, Tian L, Singamaneni S (2010) Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Interfaces 2:3429–3435Google Scholar
  60. Li Y-L, Leng Y-M, Zhang Y-J, Li T-H, Shen Z-Y, Wu A-G (2014) A new simple and reliable Hg2+ detection system based on anti-aggregation of unmodified gold nanoparticles in the presence of O-phenylenediamine. Sensors Actuators B 200:140–146Google Scholar
  61. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377:469–477Google Scholar
  62. Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227Google Scholar
  63. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643Google Scholar
  64. Liu T, Tang J, Jiang L (2004) The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem Biophys Res Commun 313(1):3–7Google Scholar
  65. Liu X, Germaine KJ, Ryan D, Dowling DN (2007) Development of a GFP-based biosensor for detecting the bioavailability and biodegradation of polychlorinated biphenyls (PCBs). J Environ Eng Lands Manag 15:261–268Google Scholar
  66. Liu X, Germaine KJ, Ryan D, Dowling DN (2010) Genetically modified pseudomonas biosensing biodegraders to detect PCB and chlorobenzoate bioavailability and biodegradation in contaminated soils. Bioeng Bugs 1:198–206Google Scholar
  67. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326Google Scholar
  68. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474(March):619–641Google Scholar
  69. Luz RAS, Iost RM, Crespilho FN (2013) Nanobioelectrochemistry. Springer-Verlag, BerlinGoogle Scholar
  70. Lvov YM, Lu ZQ, Schenkman JB, Zu XL (1998) Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions. J Am Chem Soc 120(17):4073–4080Google Scholar
  71. MacKenzie R, Auzelyte V, Olliges S et al (2009) Nanowire development and characterization for applications in biosensing. Nanosystem Des Technol: 143–173Google Scholar
  72. Mailu SN, Waryo TT, Ndangili PM, Ngece FR, Baleg AA, Baker PG, Iwuoha EI (2010) Determination of anthracene on Ag-Au alloy nanoparticles/overoxidized-polypyrrole composite modified glassy carbon electrodes. Sensors 10:9449–9465Google Scholar
  73. Mascini M, Macagnano A, Monti D, Del Carlo M, Paolesse R, Chen B, Warner P, D’Amico A, Di Natale C, Compagnone D (2004) Piezoelectric sensors for dioxins: a biomimetic approach. Biosens Bioelectron 20:1203–1210Google Scholar
  74. Mascini M, Macagnano A, Scortichini G, Del Carlo M, Diletti G, D’Amico A, Di Natale C, Compagnone D (2005) Biomimetic sensors for dioxins detection in food samples. Sensors Actuators B 111–112:376–384Google Scholar
  75. Merkoci A, Aldavert M, Marın S et al (2005) New materials for electrochemical sensing. V: nanoparticles for DNA labeling. Trends Anal Chem 24:341–349Google Scholar
  76. Muhammad A, Yusof NA, Hajian R, Abdullah J (2016) Construction of an electrochemical sensor based on carbon nanotubes/gold nanoparticles for trace determination of amoxicillin in bovine milk. Sensors 16(56):1–13.  https://doi.org/10.3390/s16010056 CrossRefGoogle Scholar
  77. Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrode. Electrochem Commun 4(10):743–746Google Scholar
  78. Nagatani N, Takeuchi A, Hossain MA, Yuhi T, Endo T, Kerman K et al (2007) Rapid and sensitive visual detection of residual pesticides in food using acetyl-cholinesterase-based disposable membrane chips. Food Control 18:914–920Google Scholar
  79. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4129–4158Google Scholar
  80. Norouzi P, Pirali-Hamedani M, Ganjali MR, Faridbod F (2010) A novel acetylcholinesterase biosensor based on chitosan-gold nanoparticles film for determination of monocrotophos using FFT continuous cyclic voltammetry. Int J Electrochem Sci 5:1434–1446Google Scholar
  81. Pal S, Alocilja EC, Downes FP (2007) Nanowire labeled direct-charge transfer biosensor for detecting bacillus species. Biosens Bioelectron 22(9):2329–2336Google Scholar
  82. Park KW (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106:1869–1877Google Scholar
  83. Park J-W, Kurosawa S, Aizawa H, Hamano H, Harada Y, Asano S, Mizushima Y, Higaki M (2006) Dioxin immunosensor using anti-2,3,7,8-TCDD antibody which was produced with mono 6-(2,3,6,7-tetrachloroxanthene-9-ylidene) hexyl succinate as a hapten. Biosens Bioelectron 22:409–414Google Scholar
  84. Peng C, Li Z, Zhu Y, Chen W, Yuan Y, Liu L, Li Q et al (2009) Simultaneous and sensitive determination of multiplex chemical residues based on multicolor quantum dot probes. Biosens Bioelectron 24:3657–3662Google Scholar
  85. Pribyl J, Hepel M, Skladal P (2006) Piezoelectric immunosensors for polychlorinated biphenyls operating in aqueous and organic phases. Sensors Actuators B 113:900–910Google Scholar
  86. Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N (2015) An electrochemical sensor based ongraphene/polyaniline/polystyrene nanoporous fibers modifiedelectrode for simultaneous determination of lead and cadmium. Sensors Actuators B 207:526–534Google Scholar
  87. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4157Google Scholar
  88. Qu F, Yang M, Lu Y, Shen G, Yu R (2006) Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA. Anal Bioanal Chem 386(2):228–234Google Scholar
  89. Ramanathan S, Patibandla S, Bandyopadhyay S, Edwards JD, Anderson J (2006) Fluorescence and infrared spectroscopy of electrochemically self assembled ZnO nanowires: evidence of the quantum confined Stark effect. J Mater Sci 17(9):651–655Google Scholar
  90. Ravindran A, Elavarasi M, Prathna TC, Raichur AM, Chandrasekaran N, Mukherjee A (2012) Selective colorimetric detection of nanomolar Cr (VI) in aqueous solutions using unmodified silver nanoparticles. Sensors Actuators B 166–167:365–371Google Scholar
  91. Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83:4614–4648.  https://doi.org/10.1021/ac200915r CrossRefGoogle Scholar
  92. Rivas GA, Rubianes MD, Rodriguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74(3):291–307Google Scholar
  93. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562Google Scholar
  94. Rusling JF, Sotzing G, Papadimitrakopoulosa F (2009) Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins. Bioelectrochemistry 76(1–2):189–194Google Scholar
  95. Salimi A, Hallaj R, Soltanian S (2009) Fabrication of a sensitive cholesterol biosensor based on cobalt-oxide nanostructures electrodeposited onto glassy carbon electrode. Electroanalysis 21(24):2693–2700Google Scholar
  96. Sanguansri P, Augustin MA (2006) Nanoscale materials development- a food industry perspective. Trends Food Sci Technol 17:547–556Google Scholar
  97. Sharma A, Matharu Z, Sumana G, Solanki PR, Kim CG, Malhotra BD (2010) Antibody immobilized cysteamine functionalized-gold nano particles for aflatoxin detection. Thin Solid Films 519:1213–1218Google Scholar
  98. Shen X, Cui Y, Pang Y, Qian H (2012) Graphene oxide nanoribbon and polyhedral oligomeric silsesquioxane assembled composite frameworks for pre-concentrating and electrochemical sensing of 1-hydroxypyrene. Electrochim Acta 59:91–99Google Scholar
  99. So HM, Park DW, Jeon EK, Kim YH, Kim BS, Lee CK, Choi SY, Kim SC, Chang H, Lee JO (2008) Detection and titer estimation of Escherichia coli using aptamer functionalized Single-walled Carbon-nano tube Field-effect Transistors. Small 4:197–201Google Scholar
  100. Soh N, Tokuda T, Watanabe T, Mishima K, Imato T, Masadome T, Asano Y, Okutani S, Niwa O, Brown S (2003) A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide. Talanta 60:733–745Google Scholar
  101. Somerset VS, Klink MJ, Baker PGL, Iwuoha EI (2007) Acetylcholinesterase polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents. J Environ Sci Health B 42:297–304Google Scholar
  102. Somerset V, Baker P, Iwuoha E (2009) Mercaptobenzothiazole-on-gold organic phase biosensor systems: 1. Enhanced organosphosphate pesticide determination. J Environ Sci Health B 44:164–178Google Scholar
  103. Song KM, Jeong E, Jeon W, Cho M, Ban C (2012) Aptasensor for ampicillin using gold nanoparticle based dual fluorescence–colorimetric methods. Anal Bioanal Chem 402:2153–2161Google Scholar
  104. Sotiropoulou S, Gavalas V, Vamvakaki V, Chaniotakis NA (2003) Novel carbon materials in biosensor systems. Biosens Bioelectron 18(2–3):211–215Google Scholar
  105. Stern E, Klemic JF, Routenberg DA et al (2007) Label free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127):519–522Google Scholar
  106. Su M, Li S, Dravida VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 82:3562–3567Google Scholar
  107. Sugunan A, Thanachayanont C, Dutta J, Hilborn J (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340Google Scholar
  108. Tsutsumi T, Miyoshi N, Sasaki K, Maitani T (2008) Biosensor immunoassay for the screening of dioxin-like polychlorinated biphenyls in retail fish. Anal Chim Acta 617:177–183Google Scholar
  109. Turner AP (2000) Biosensors-sense and sensitivity. Science 290:1315–1317Google Scholar
  110. Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853Google Scholar
  111. Verma ML (2017) Nanobiotechnology advances in enzymatic biosensors for the agri-food industry. Environ Chem Lett: 1–6Google Scholar
  112. Vijayakumar CS, Venkatakrishnan K, Tan B (2017) SERS active nanobiosensor functionalized by self-assembled 3D nickel nanonetworks for glutathione detection. ACS Appl Mater Interfaces 9(6):5077–5091Google Scholar
  113. Vo-Dinh T, Cullum BM, Stokes DL (2001) Nanosensors and biochips: frontiers in biomolecular diagnostics. Sensors Actuators B 74(1–3):2–11Google Scholar
  114. Wan H, Sun Q, Li H, Sun F, Hu N, Wang P (2015) Screen-printed gold electrode with gold nanoparticles modificationfor simultaneous electrochemical determination of lead and copper. Sensors Actuators B 209:336–342Google Scholar
  115. Wang J (2003) Nanoparticle-based electrochemical DNA detection. Anal Chim Acta 500(1–2):247–257Google Scholar
  116. Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421–426Google Scholar
  117. Wang J, Xu D, Kawde AN, Polsky R (2001) Metal nanoparticle based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 73:5576–5581Google Scholar
  118. Wang J, Liu G, Polsky R, Merkoci A (2002) Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem Commun 4(9):722–726Google Scholar
  119. Wang J, Kawde A, Mustafa M (2003) Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 128:912–916Google Scholar
  120. Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Kotov NA (2009) Simple, rapid, sensitive, and versatile SWNT− Paper sensor for environmental toxin detection competitive with ELISA. Nano Lett 9(12):4147–4152Google Scholar
  121. Wang Z, Zhang J, Ekman JM, Kenis PJ, Lu Y (2010) DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett 10(5):1886–1891Google Scholar
  122. Wei Y, Gao C, Meng F-L, Li H-H, Wang L, Liu J-H, Huang X-J (2012) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J Phys Chem C 116:1034–1041Google Scholar
  123. Wei H, Abtahi SMH, Vikesland PJ (2015) Plasmonic colorimetric and SERS sensors for environmental analysis. Environ Sci Nano 2:120–135Google Scholar
  124. Xia V, Hung W, Zhang J, Niu Z, Li Z (2011) Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens Bioelectron 26:3555–3561Google Scholar
  125. Yanez-Sedeno P, Pingarron JM (2005) Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem 382:884–886Google Scholar
  126. Yang H, Qu L, Wimbrow AN, Jiang X, Sun Y (2007) Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int J Food Microbiol 118(2):132–138Google Scholar
  127. Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97:1184–1190Google Scholar
  128. Yılmaz E, Özgürb E, Bereli N, Türkmen D, Denizli A (2017) Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection. Mater Sci Eng C 73(1):603–610Google Scholar
  129. Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electochem Commun 5(5):408–411Google Scholar
  130. Zhang B, Zhang ZJ, Wang B, Yan J, Li JJ, Cai SM (2001) A study of designed current oscillations of Fe in H2SO4 solution. Acta Chim Sin 59:1932Google Scholar
  131. Zhao Q, Gan Z, Zhuang Q (2002a) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613Google Scholar
  132. Zhao Y-D, Zhang W-D, Chen H, Luo Q-M, Li SFY (2002b) Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sensors Actuators B 87(1):168–172Google Scholar
  133. Zhao G, Wang H, Liu G, Wang Z (2016) Simultaneous determination of Cd(II) and Pb(II) based on bismuth film/carboxylic acid functionalized multi-walled carbon nanotubes-β-cyclodextrin-Nafion nanocomposite modified electrode. Int J Electrochem Sci 11:8109–8122.  https://doi.org/10.20964/2016.10.07 CrossRefGoogle Scholar
  134. Zheng W, Zhao HY, Zhang JX, Zhou HM, Xu XX, Zheng YF, Wang YB, Cheng Y, Jang BZ (2010) A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes. Electrochem Commun 12(7):869–871Google Scholar
  135. Zhou Y, Zhao H, He Y, Ding N, Cao Q (2011) Colorimetric detection of Cu2+ using 4-mercaptobenzoic acid modified silver nanoparticles. Colloid Surf A: Physicochem Eng Aspects 391:179–183Google Scholar
  136. Zhou Y, Dong H, Liu L, Li M, Xiao K, Xu M (2014) Selective and sensitive colorimetric sensor of mercury (II) based ongold nanoparticles and 4-mercaptophenylboronic acid. Sensors Actuators B 196:106–111Google Scholar
  137. Zhu N, Zhang A, He P, Fang Y (2003) Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization. Analyst 128(3):260–264Google Scholar
  138. Zhu H, Xu Y, Liu A, Kong N, Shan F, Yang W, Barrow CJ, Liu J (2015) Graphene nanodots-encaged porous gold electrode fabricated via ion beam sputtering deposition for electrochemical analysis of heavy metal ions. Sensors Actuators B 206:592–600Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemo and Biosensors Group, Faculty of PharmacyUniversity of JemberJemberIndonesia

Personalised recommendations