Advertisement

Nanoparticles for Heavy Metal Removal from Drinking Water

  • Konstantinos Simeonidis
  • Carlos Martinez-Boubeta
  • Paula Zamora-Perez
  • Pilar Rivera-Gil
  • Efthimia Kaprara
  • Evgenios Kokkinos
  • Manassis Mitrakas
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 14)

Abstract

The implementation of nanotechnology in drinking water treatment is a very promising field for applied research. A major part of this effort focuses on reducing the building units dimensions in the existing inorganic adsorbents used for the purification of water versus heavy metal species. The development of engineered nanoparticles has the potential to provide improved uptake efficiencies and sustainability if issues related to cost, technical incorporation and environmental safety will be overcome. We reviewed (1) the technical and economic conditions for potential implementation of inorganic nanoparticles as alternative adsorbents of heavy metals from drinking water, (2) the reported studies referring to the capture of heavy metals ionic forms by inorganic nanoparticles giving emphasis to those succeeding residual concentrations below the maximum contaminant level and (3) the indirect health and environmental risk related to the application of nanosized materials in a water treatment line. In particular, a separate section is devoted to the identification of an optimum nanoparticle profile that fits the unique characteristics of each class of emerging heavy metals with respect to the chemical affinity, charge interactions, aqueous speciation, redox reactions and ion-exchange processes. Importantly, in order to bridge fundamental research with the requirements of the technical and commercial sector dealing with water treatment plants, we introduce an evaluation path for the preliminary qualification of candidate nanoparticulate materials, based on a universal index which is derived by adsorption isotherms recorded under realistic conditions of application.

Keywords

Drinking water Inorganic nanoparticles Heavy metals Uptake mechanisms Maximum contaminant level Environmental impact Fate 

Notes

Acknowledgement

This scientific work was implemented within the frame of the action “Supporting Postdoctoral Researchers” of the Operational Program “Development of Human Resources, Education and Lifelong Learning 2014-2020” of IKY State Scholarships Foundation and is co-financed by the European Social Fund and the Greek State.

References

  1. Adeleye AS, Conway JR, Garner K et al (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662.  https://doi.org/10.1016/j.cej.2015.10.105 CrossRefGoogle Scholar
  2. Afkhami A, Norooz-Asl R (2009) Removal, preconcentration and determination of Mo(VI) from water and wastewater samples using maghemite nanoparticles. Colloids Surf A Physicochem Eng Asp 346:52–57.  https://doi.org/10.1016/j.colsurfa.2009.05.024 CrossRefGoogle Scholar
  3. Ahalya K, Suriyanarayanan N, Ranjithkumar V (2014) Effect of cobalt substitution on structural and magnetic properties and chromium adsorption of manganese ferrite nanoparticles. J Magn Magn Mater 372:208–213.  https://doi.org/10.1016/j.jmmm.2014.07.030 CrossRefGoogle Scholar
  4. Akin I, Arslan G, Tor A et al (2012) Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. J Hazard Mater 235:62–68.  https://doi.org/10.1016/j.jhazmat.2012.06.024 CrossRefGoogle Scholar
  5. An B, Liang Q, Zhao D (2011) Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Res 45:1961–1972.  https://doi.org/10.1016/j.watres.2011.01.004 CrossRefGoogle Scholar
  6. Anjum NA, Gill SS, Duarte AC et al (2013) Silver nanoparticles in soil-plant systems. J Nanopart Res.  https://doi.org/10.1007/s11051-013-1896-7
  7. Balcells L, Martínez-Boubeta C, Cisneros-Fernández J et al (2016) One-step route to iron oxide hollow nanocuboids by cluster condensation: implementation in water remediation technology. ACS Appl Mater Interfaces 8:28599–28606.  https://doi.org/10.1021/acsami.6b08709 CrossRefGoogle Scholar
  8. Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862.  https://doi.org/10.1021/ar2003368 CrossRefGoogle Scholar
  9. Ben-Moshe T, Frenk S, Dror I et al (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646.  https://doi.org/10.1016/j.chemosphere.2012.09.018 CrossRefGoogle Scholar
  10. Bernhardt ES, Colman BP, Hochella MF et al (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1954–1965.  https://doi.org/10.2134/jeq2009.0479 CrossRefGoogle Scholar
  11. Bolyard SC, Reinhart DR, Santra S (2013) Behavior of engineered nanoparticles in landfill leachate. Environ Sci Technol 47:8114–8122.  https://doi.org/10.1021/es305175e CrossRefGoogle Scholar
  12. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465.  https://doi.org/10.1016/j.jhazmat.2010.11.029 CrossRefGoogle Scholar
  13. Brandl F, Bertrand N, Lima EM, Langer R (2015) Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil. Nat Commun.  https://doi.org/10.1038/ncomms8765
  14. California Office of Administrative Law (1985) California code of regulations. California Waste Extraction TestGoogle Scholar
  15. Camtakan Z, Erenturk SA, Yusan SD (2012) Magnesium oxide nanoparticles: preparation, characterization, and uranium sorption properties. Environ Prog Sustain Energy 31:536–543.  https://doi.org/10.1002/ep.10575 CrossRefGoogle Scholar
  16. Chen R, Zhi C, Yang H et al (2011) Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. J Colloid Interface Sci 359:261–268.  https://doi.org/10.1016/j.jcis.2011.02.071
  17. Choi W, Yeo J, Ryu J et al (2010) Photocatalytic oxidation mechanism of As(III) on TiO : unique role of As(III) as a charge recombinant species. Environ Sci Technol 44:9099–9104.  https://doi.org/10.1021/es102507u CrossRefGoogle Scholar
  18. Chowdhury SR, Yanful EK (2010) Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J Environ Manag 91:2238–2247.  https://doi.org/10.1016/j.jenvman.2010.06.003 CrossRefGoogle Scholar
  19. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  20. Crane RA, Scott TB (2014) The removal of uranium onto nanoscale zero-valent iron particles in anoxic batch systems. J Nanomater 2014:1–9.  https://doi.org/10.1155/2014/956360 CrossRefGoogle Scholar
  21. Cui H, Su Y, Li Q et al (2013) Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling. Water Res 47:6258–6268.  https://doi.org/10.1016/j.watres.2013.07.040 CrossRefGoogle Scholar
  22. Dai Y, Hu Y, Jiang B et al (2016) Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction. J Hazard Mater 309:249–258.  https://doi.org/10.1016/j.jhazmat.2015.04.013 CrossRefGoogle Scholar
  23. Dey A, Singh R, Purkait MK (2014) Cobalt ferrite nanoparticles aggregated schwertmannite: a novel adsorbent for the efficient removal of arsenic. J Water Process Eng 3:1–9.  https://doi.org/10.1016/j.jwpe.2014.07.002 CrossRefGoogle Scholar
  24. Dickson D, Liu G, Cai Y (2017) Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates. J Environ Manag 186:261–267.  https://doi.org/10.1016/j.jenvman.2016.07.068 CrossRefGoogle Scholar
  25. Dimiropoulos V, Katsoyiannis IA, Zouboulis AI et al (2015) Enhanced U(VI) removal from drinking water by nanostructured binary Fe/Mn oxy-hydroxides. J Water Process Eng 7:227–236.  https://doi.org/10.1016/j.jwpe.2015.06.014 CrossRefGoogle Scholar
  26. Dou B, Chen H (2011) Removal of toxic mercury(II) from aquatic solutions by synthesized TiO2 nanoparticles. Desalination 269:260–265.  https://doi.org/10.1016/j.desal.2010.11.009 CrossRefGoogle Scholar
  27. Du W, Tan W, Peralta-Videa JR et al (2016) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem.  https://doi.org/10.1016/j.plaphy.2016.04.024
  28. Dubey S, Upadhyay SN, Sharma YC (2016) Optimization of removal of Cr by γ-alumina nano-adsorbent using response surface methodology. Ecol Eng 97:272–283.  https://doi.org/10.1016/j.ecoleng.2016.10.005 CrossRefGoogle Scholar
  29. Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18:386–395.  https://doi.org/10.1007/s11356-010-0382-3 CrossRefGoogle Scholar
  30. European Standard EN 12457-4 (2002) Characterization of waste-leaching-compliance test for leaching of granular waste materials and sludge-Part 1: one stage batch test at a liquid to solid ratio of 10 L/kg for materials with high solid content and with particle size below 10 mm. (without or with size reduction)Google Scholar
  31. Feng L, Cao M, Ma X et al (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217–218:439–446.  https://doi.org/10.1016/j.jhazmat.2012.03.073 CrossRefGoogle Scholar
  32. Fu Y, Wang J, Liu Q, Zeng H (2014) Water-dispersible magnetic nanoparticle–graphene oxide composites for selenium removal. Carbon N Y 77:710–721.  https://doi.org/10.1016/j.carbon.2014.05.076 CrossRefGoogle Scholar
  33. Fu R, Yang Y, Xu Z et al (2015) The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere 138:726–734.  https://doi.org/10.1016/j.chemosphere.2015.07.051 CrossRefGoogle Scholar
  34. Fu R, Zhang X, Xu Z et al (2017) Fast and highly efficient removal of chromium (VI) using humus-supported nanoscale zero-valent iron: influencing factors, kinetics and mechanism. Sep Purif Technol 174:362–371.  https://doi.org/10.1016/j.seppur.2016.10.058 CrossRefGoogle Scholar
  35. Garcia S, Sardar S, Maldonado S et al (2014) Study of As(III) and As(V) oxoanion adsorption onto single and mixed ferrite and hausmannite nanomaterials. Microchem J 117:52–60.  https://doi.org/10.1016/j.microc.2014.06.008 CrossRefGoogle Scholar
  36. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664.  https://doi.org/10.1021/es103040t CrossRefGoogle Scholar
  37. Goldberg S, Forster HS, Godfrey CL (1996) Molybdenum adsorption on oxides, clay minerals, and soils. Soil Sci Soc Am J 60:425–432.  https://doi.org/10.2136/sssaj1996.03615995006000020013x CrossRefGoogle Scholar
  38. Gómez-Pastora J, Bringas E, Ortiz I (2014) Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem Eng J 256:187–204.  https://doi.org/10.1016/j.cej.2014.06.119 CrossRefGoogle Scholar
  39. Gómez-Pastora J, Dominguez S, Bringas E et al (2017) Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem Eng J 310:407–427.  https://doi.org/10.1016/j.cej.2016.04.140 CrossRefGoogle Scholar
  40. Gonzalez CM, Hernandez J, Parsons JG, Gardea-Torresdey JL (2010) A study of the removal of selenite and selenate from aqueous solutions using a magnetic iron/manganese oxide nanomaterial and ICP-MS. Microchem J 96:324–329.  https://doi.org/10.1016/j.microc.2010.05.005 CrossRefGoogle Scholar
  41. Gonzalez CM, Hernandez J, Parsons JG, Gardea-Torresdey JL (2011) Adsorption of selenite and selenate by a high- and low-pressure aged manganese oxide nanomaterial. Instrum Sci Technol 39:1–19.  https://doi.org/10.1080/10739149.2010.537721 CrossRefGoogle Scholar
  42. Gonzalez CM, Hernandez J, Peralta-Videa JR et al (2012) Sorption kinetic study of selenite and selenate onto a high and low pressure aged iron oxide nanomaterial. J Hazard Mater 211:138–145.  https://doi.org/10.1016/j.jhazmat.2011.08.023 CrossRefGoogle Scholar
  43. Gorski CA, Handler RM, Beard BL et al (2012) Fe atom exchange between aqueous Fe2+ and magnetite. Environ Sci Technol 46:12399–12407.  https://doi.org/10.1021/es204649a CrossRefGoogle Scholar
  44. Goswami A, Raul PK, Purkait MK (2012) Arsenic adsorption using copper (II) oxide nanoparticles. Chem Eng Res Des 90:1387–1396.  https://doi.org/10.1016/j.cherd.2011.12.006 CrossRefGoogle Scholar
  45. Gupta A, Yunus M, Sankararamakrishnan N (2012) Zerovalent iron encapsulated chitosan nanospheres – a novel adsorbent for the removal of total inorganic arsenic from aqueous systems. Chemosphere 86:150–155.  https://doi.org/10.1016/j.chemosphere.2011.10.003 CrossRefGoogle Scholar
  46. Gupta VK, Chandra R, Tyagi I, Verma M (2016) Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J Colloid Interface Sci 478:54–62.  https://doi.org/10.1016/j.jcis.2016.05.064 CrossRefGoogle Scholar
  47. Gusain D, Singh PK, Sharma YC (2016) Kinetic and equilibrium modelling of adsorption of cadmium on nano crystalline zirconia using response surface methodology. Environ Nanotechnol Monit Manag 6:99–107.  https://doi.org/10.1016/j.enmm.2016.07.002 CrossRefGoogle Scholar
  48. Hakami O, Zhang Y, Banks CJ (2012) Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Res 46:3913–3922.  https://doi.org/10.1016/j.watres.2012.04.032 CrossRefGoogle Scholar
  49. Hang C, Li Q, Gao S, Shang JK (2012) As(III) and As(V) adsorption by hydrous zirconium oxide nanoparticles synthesized by a hydrothermal process followed with heat treatment. Ind Eng Chem Res 51:353–361.  https://doi.org/10.1021/ie202260g CrossRefGoogle Scholar
  50. He J, Yang X, Men B, Wang D (2016) Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review. J Environ Sci 39:97–109.  https://doi.org/10.1016/j.jes.2015.12.003 CrossRefGoogle Scholar
  51. Ho YS, Ng JCY, McKay G (2000) Kinetics of pollutant sorption by biosorbents: review. Sep Purif Methods 29:189–232.  https://doi.org/10.1081/SPM-100100009 CrossRefGoogle Scholar
  52. Hokkanen S, Repo E, Lou S, Sillanpää M (2015) Removal of arsenic(V) by magnetic nanoparticle activated microfibrillated cellulose. Chem Eng J 260:886–894.  https://doi.org/10.1016/j.cej.2014.08.093 CrossRefGoogle Scholar
  53. Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653.  https://doi.org/10.3390/ijms161125980 CrossRefGoogle Scholar
  54. Hu J, Chen G, Lo IMC (2005a) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536.  https://doi.org/10.1016/j.watres.2005.05.051 CrossRefGoogle Scholar
  55. Hu J, Lo IMC, Chen G (2005b) Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir 21:11173–11179.  https://doi.org/10.1021/la051076h CrossRefGoogle Scholar
  56. Jaiswal A, Mani R, Banerjee S et al (2015) Synthesis of novel nano-layered double hydroxide by urea hydrolysis method and their application in removal of chromium(VI) from aqueous solution: kinetic, thermodynamic and equilibrium studies. J Mol Liq 202:52–61.  https://doi.org/10.1016/j.molliq.2014.12.004 CrossRefGoogle Scholar
  57. Jegadeesan G, Al-Abed SR, Sundaram V et al (2010) Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects. Water Res 44:965–973.  https://doi.org/10.1016/j.watres.2009.10.047 CrossRefGoogle Scholar
  58. Jiang W, Pelaez M, Dionysiou DD et al (2013) Chromium(VI) removal by maghemite nanoparticles. Chem Eng J 222:527–533.  https://doi.org/10.1016/j.cej.2013.02.049 CrossRefGoogle Scholar
  59. Jin Y, Liu F, Tong M, Hou Y (2012) Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. J Hazard Mater 227–228:46–468.  https://doi.org/10.1016/j.jhazmat.2012.05.004 CrossRefGoogle Scholar
  60. Jing C, Meng X, Calvache E, Jiang G (2009) Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent. Environ Pollut 157:2514–2519.  https://doi.org/10.1016/j.envpol.2009.03.011 CrossRefGoogle Scholar
  61. Jordan N, Foerstendorf H, Weiß S et al (2011) Sorption of selenium(VI) onto anatase: macroscopic and microscopic characterization. Geochim Cosmochim Acta 75:1519–1530.  https://doi.org/10.1016/j.gca.2011.01.012 CrossRefGoogle Scholar
  62. Jordan N, Ritter A, Scheinost AC et al (2014) Selenium(IV) uptake by maghemite (γ-Fe2O3). Environ Sci Technol 48:1665–1674.  https://doi.org/10.1021/es4045852 CrossRefGoogle Scholar
  63. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298.  https://doi.org/10.1021/es048991u CrossRefGoogle Scholar
  64. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050.  https://doi.org/10.1021/es0520924 CrossRefGoogle Scholar
  65. Kaprara E, Kazakis N, Simeonidis K et al (2015) Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background. J Hazard Mater 281:2–11.  https://doi.org/10.1016/j.jhazmat.2014.06.084 CrossRefGoogle Scholar
  66. Kaprara E, Simeonidis K, Zouboulis A, Mitrakas M (2016) Rapid small-scale column tests for Cr(VI) removal by granular magnetite. Water Sci Technol Water Supply 16:525–532.  https://doi.org/10.2166/ws.2015.164 CrossRefGoogle Scholar
  67. Karami H (2013) Heavy metal removal from water by magnetite nanorods. Chem Eng J 219:209–216.  https://doi.org/10.1016/j.cej.2013.01.022 CrossRefGoogle Scholar
  68. Kazakis N, Kantiranis N, Voudouris KS et al (2015) Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater. Sci Total Environ 514:224–238.  https://doi.org/10.1016/j.scitotenv.2015.01.080 CrossRefGoogle Scholar
  69. Khan TA, Nazir M, Ali I, Kumar A (2013) Removal of chromium(VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2013.08.019
  70. Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851.  https://doi.org/10.1897/08-090.1 CrossRefGoogle Scholar
  71. Kokkinos E, Simeonidis K, Pinakidou F et al (2017) Optimization of tetravalent manganese feroxyhyte’s negative charge density: a high-performing mercury adsorbent from drinking water. Sci Total Environ 574:482–489.  https://doi.org/10.1016/j.scitotenv.2016.09.068 CrossRefGoogle Scholar
  72. Krauskopf KB, Ernst WG (2002) Frontiers in geochemistry: organic, solution and ore deposit geochemistry, vol 2. Bellwether Pub. Ltd., ColumbiaGoogle Scholar
  73. Kumari M, Pittman CU, Mohan D (2015) Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. J Colloid Interface Sci 442:120–132.  https://doi.org/10.1016/j.jcis.2014.09.012 CrossRefGoogle Scholar
  74. Kwon JH, Wilson LD, Sammynaiken R (2015) Sorptive uptake of selenium with magnetite and its supported materials onto activated carbon. J Colloid Interface Sci 457:388–397.  https://doi.org/10.1016/j.jcis.2015.07.013 CrossRefGoogle Scholar
  75. Lata S, Samadder SR (2016) Removal of arsenic from water using nano adsorbents and challenges: a review. J Environ Manag 166:387–406.  https://doi.org/10.1016/j.jenvman.2015.10.039 CrossRefGoogle Scholar
  76. Li R, Li Q, Gao S, Shang JK (2012) Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part A. Adsorption capacity and mechanism. Chem Eng J 185–186:127–135.  https://doi.org/10.1016/j.cej.2012.01.061 CrossRefGoogle Scholar
  77. Li Z-J, Wang L, Yuan L-Y et al (2015) Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. J Hazard Mater 290:26–33.  https://doi.org/10.1016/j.jhazmat.2015.02.028 CrossRefGoogle Scholar
  78. Liddell HG, Scott R, Jones HS, McKenzie R (1996) A Greek-English lexicon. Clarendon Press, OxfordGoogle Scholar
  79. Ling L, Pan B, Zhang W (2015) Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV). Water Res 71:274–281.  https://doi.org/10.1016/j.watres.2015.01.002 CrossRefGoogle Scholar
  80. Litter MI (2015) Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis. Pure Appl Chem 87:557–567.  https://doi.org/10.1515/pac-2014-0710 CrossRefGoogle Scholar
  81. Lo S-I, Chen P-C, Huang C-C, Chang H-T (2012) Gold nanoparticle–aluminum oxide adsorbent for efficient removal of mercury species from natural waters. Environ Sci Technol 46:2724–2730.  https://doi.org/10.1021/es203678v CrossRefGoogle Scholar
  82. López de Arroyabe Loyo R, Nikitenko SI, Scheinost AC, Simonoff M (2008) Immobilization of selenite on Fe3O4 and Fe/Fe3C ultrasmall particles. Environ Sci Technol 42:2451–2456.  https://doi.org/10.1021/es702579w CrossRefGoogle Scholar
  83. Lounsbury AW, Yamani JS, Johnston CP et al (2016) The role of counter ions in nano-hematite synthesis: implications for surface area and selenium adsorption capacity. J Hazard Mater 310:117–124.  https://doi.org/10.1016/j.jhazmat.2016.01.078 CrossRefGoogle Scholar
  84. Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31.  https://doi.org/10.1016/j.jmmm.2013.12.008 CrossRefGoogle Scholar
  85. Luo C, Tian Z, Yang B et al (2013) Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal. Chem Eng J 234:256–265.  https://doi.org/10.1016/j.cej.2013.08.084 CrossRefGoogle Scholar
  86. Luther S, Borgfeld N, Kim J, Parsons JG (2012) Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials. Microchem J 101:30–36.  https://doi.org/10.1016/j.microc.2011.10.001 CrossRefGoogle Scholar
  87. Mahmoud ME, Nabil GM, Mahmoud SME (2015) High performance nano-zirconium silicate adsorbent for efficient removal of copper (II), cadmium (II) and lead (II). J Environ Chem Eng 3:1320–1328.  https://doi.org/10.1016/j.jece.2014.11.027 CrossRefGoogle Scholar
  88. Martinson CA, Reddy KJ (2009) Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J Colloid Interface Sci 336:406–411.  https://doi.org/10.1016/j.jcis.2009.04.075 CrossRefGoogle Scholar
  89. Matranga V, Corsi I (2012) Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar Environ Res 76:32–40.  https://doi.org/10.1016/j.marenvres.2012.01.006 CrossRefGoogle Scholar
  90. Maynard AD, Aitken RJ, Butz T et al (2006) Safe handling of nanotechnology. Nature 444:267–269.  https://doi.org/10.1038/444267a CrossRefGoogle Scholar
  91. Mayo JT, Yavuz C, Yean S et al (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75.  https://doi.org/10.1016/j.stam.2006.10.005 CrossRefGoogle Scholar
  92. Mishra AK, Ramaprabhu S (2010) Magnetite decorated multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater. J Phys Chem C 114:2583–2590.  https://doi.org/10.1021/jp911631w CrossRefGoogle Scholar
  93. Mitchell K, Couture R-M, Johnson TM et al (2013) Selenium sorption and isotope fractionation: iron(III) oxides versus iron(II) sulfides. Chem Geol 342:21–28.  https://doi.org/10.1016/j.chemgeo.2013.01.017 CrossRefGoogle Scholar
  94. Moore KW, Huck PM, Siverns S (2008) Arsenic removal using oxidative media and nanofiltration. J Am Water Works Assoc 100:74–83CrossRefGoogle Scholar
  95. Nahuel Montesinos V, Quici N, Beatriz Halac E et al (2014) Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: understanding the Fe(III)–Cr(III) passive outer layer structure. Chem Eng J 244:569–575.  https://doi.org/10.1016/j.cej.2014.01.093 CrossRefGoogle Scholar
  96. Nishad PA, Bhaskarapillai A, Velmurugan S (2014) Nano-titania-crosslinked chitosan composite as a superior sorbent for antimony (III) and (V). Carbohydr Polym 108:169–175.  https://doi.org/10.1016/j.carbpol.2014.02.091 CrossRefGoogle Scholar
  97. Oladoja NA, Hu S, Drewes JE, Helmreich B (2016) Insight into the defluoridation efficiency of nano magnesium oxide in groundwater system contaminated with hexavalent chromium and fluoride. Sep Purif Technol 162:195–202.  https://doi.org/10.1016/j.seppur.2016.02.028 CrossRefGoogle Scholar
  98. Olegario JT, Yee N, Miller M et al (2010) Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions. J Nanopart Res 12:2057–2068.  https://doi.org/10.1007/s11051-009-9764-1 CrossRefGoogle Scholar
  99. Özlem Kocabaş-Ataklı Z, Yürüm Y (2013) Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water. Chem Eng J 225:625–635.  https://doi.org/10.1016/j.cej.2013.03.106 CrossRefGoogle Scholar
  100. Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci 63:437–456.  https://doi.org/10.1111/j.1365-2389.2012.01475.x CrossRefGoogle Scholar
  101. Park H, Myung NV, Jung H, Choi H (2009) As(V) remediation using electrochemically synthesized maghemite nanoparticles. J Nanopart Res 11:1981–1989.  https://doi.org/10.1007/s11051-008-9558-x CrossRefGoogle Scholar
  102. Paul ML, Samuel J, Chandrasekaran N, Mukherjee A (2014) Preparation and characterization of layer-by-layer coated nano metal oxides-polymer composite film using Taguchi design method for Cr(VI) removal. J Environ Chem Eng 2:1937–1946.  https://doi.org/10.1016/j.jece.2014.08.018 CrossRefGoogle Scholar
  103. Pena ME, Korfiatis GP, Patel M et al (2005) Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res 39:2327–2337.  https://doi.org/10.1016/j.watres.2005.04.006 CrossRefGoogle Scholar
  104. Petala E, Dimos K, Douvalis A et al (2013) Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution. J Hazard Mater 261:295–306.  https://doi.org/10.1016/j.jhazmat.2013.07.046 CrossRefGoogle Scholar
  105. Phu ND, Phong PC, Chau N et al (2009) Arsenic removal from water by magnetic Fe1-xCoxFe2O4 and Fe1-yNiyFe2O4nanoparticles. J Exp Nanosci 4:253–258.  https://doi.org/10.1080/17458080802590474 CrossRefGoogle Scholar
  106. Pinakidou F, Katsikini M, Simeonidis K et al (2015) An X-ray absorption study of synthesis- and As adsorption-induced microstructural modifications in Fe oxy-hydroxides. J Hazard Mater 298:203–209.  https://doi.org/10.1016/j.jhazmat.2015.05.037 CrossRefGoogle Scholar
  107. Pinakidou F, Kaprara E, Katsikini M et al (2016a) Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: an X-ray absorption study. Sci Total Environ 551–552:246–253.  https://doi.org/10.1016/j.scitotenv.2016.01.208 CrossRefGoogle Scholar
  108. Pinakidou F, Katsikini M, Paloura EC et al (2016b) Monitoring the role of Mn and Fe in the As-removal efficiency of tetravalent manganese feroxyhyte nanoparticles from drinking water: an X-ray absorption spectroscopy study. J Colloid Interface Sci 477:148–155.  https://doi.org/10.1016/j.jcis.2016.05.041 CrossRefGoogle Scholar
  109. Pinakidou F, Katsikini M, Simeonidis K et al (2016c) On the passivation mechanism of Fe3O4 nanoparticles during Cr(VI) removal from water: a XAFS study. Appl Surf Sci 360:1080–1086.  https://doi.org/10.1016/j.apsusc.2015.11.063 CrossRefGoogle Scholar
  110. Poguberović SS, Krčmar DM, Maletić SP et al (2016) Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol Eng 90:42–49.  https://doi.org/10.1016/j.ecoleng.2016.01.083 CrossRefGoogle Scholar
  111. Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478CrossRefGoogle Scholar
  112. Qiu H, Lv L, Pan B et al (2009) Critical review in adsorption kinetic models. J Zhejiang Univ A 10:716–724.  https://doi.org/10.1631/jzus.A0820524 CrossRefGoogle Scholar
  113. Rajput S, Pittman CU, Mohan D (2016) Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J Colloid Interface Sci 468:334–346.  https://doi.org/10.1016/j.jcis.2015.12.008 CrossRefGoogle Scholar
  114. Ray PZ, Shipley HJ (2015) Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Adv 5:29885–29907.  https://doi.org/10.1039/C5RA02714D CrossRefGoogle Scholar
  115. Recillas S, Colón J, Casals E et al (2010) Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. J Hazard Mater 184:425–431.  https://doi.org/10.1016/j.jhazmat.2010.08.052 CrossRefGoogle Scholar
  116. Rivera-Gil P, Jimenez De Aberasturi D, Wulf V et al (2013) The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res 46:743–749.  https://doi.org/10.1021/ar300039j CrossRefGoogle Scholar
  117. Saeidnia S, Asadollahfardi G, Khodadadi Darban A (2016) Simulation of adsorption of antimony on zero-valent iron nanoparticles coated on the industrial minerals (kaolinite, bentonite and perlite) in mineral effluent. Desalin Water Treat 57:22321–22328.  https://doi.org/10.1080/19443994.2015.1130656 CrossRefGoogle Scholar
  118. Saha S, Sarkar P (2012) Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. J Hazard Mater 227:68–78.  https://doi.org/10.1016/j.jhazmat.2012.05.001 CrossRefGoogle Scholar
  119. Sánchez A, Recillas S, Font X et al (2011) Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. TrAC Trends Anal Chem 30:507–516.  https://doi.org/10.1016/j.trac.2010.11.011 CrossRefGoogle Scholar
  120. Santhosh C, Velmurugan V, Jacob G et al (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137.  https://doi.org/10.1016/j.cej.2016.08.053 CrossRefGoogle Scholar
  121. Shan C, Ma Z, Tong M (2014) Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles. J Hazard Mater 268:229–236.  https://doi.org/10.1016/j.jhazmat.2014.01.020 CrossRefGoogle Scholar
  122. Sheela T, Nayaka YA, Viswanatha R et al (2012) Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technol 217:163–170.  https://doi.org/10.1016/j.powtec.2011.10.023 CrossRefGoogle Scholar
  123. Sheng G, Shao X, Li Y et al (2014) Enhanced removal of uranium(VI) by nanoscale zerovalent iron supported on Na–bentonite and an investigation of mechanism. J Phys Chem A 118:2952–2958.  https://doi.org/10.1021/jp412404w CrossRefGoogle Scholar
  124. Shi L, Lin Y-M, Zhang X, Chen Z (2011) Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chem Eng J 171:612–617.  https://doi.org/10.1016/j.cej.2011.04.038 CrossRefGoogle Scholar
  125. Shipley HJ, Engates KE, Guettner AM (2010) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13:2387–2397.  https://doi.org/10.1007/s11051-010-9999-x CrossRefGoogle Scholar
  126. Shipley HJ, Engates KE, Grover VA (2013) Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion. Environ Sci Pollut Res 20:1727–1736.  https://doi.org/10.1007/s11356-012-0984-z CrossRefGoogle Scholar
  127. Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92.  https://doi.org/10.1186/s11671-017-1861-y CrossRefGoogle Scholar
  128. Simeonidis K, Gkinis T, Tresintsi S et al (2011) Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chem Eng J 168:1008–1015.  https://doi.org/10.1016/j.cej.2011.01.074
  129. Simeonidis K, Tziomaki M, Angelakeris M et al (2013) Development of iron-based nanoparticles for Cr(VI) removal from drinking water. EPJ Web Conf 40:8007.  https://doi.org/10.1051/epjconf/20134008007 CrossRefGoogle Scholar
  130. Simeonidis K, Kaprara E, Samaras T et al (2015) Optimizing magnetic nanoparticles for drinking water technology: the case of Cr(VI). Sci Total Environ 535:61–68.  https://doi.org/10.1016/j.scitotenv.2015.04.033 CrossRefGoogle Scholar
  131. Simeonidis K, Mourdikoudis S, Kaprara E et al (2016) Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ Sci Water Res Technol 2:43–70.  https://doi.org/10.1039/C5EW00152H CrossRefGoogle Scholar
  132. Simeonidis K, Martinez-Boubeta C, Rivera-Gil P et al (2017a) Regeneration of arsenic spent adsorbents by Fe/MgO nanoparticles. J Chem Technol Biotechnol.  https://doi.org/10.1002/jctb.5187
  133. Simeonidis K, Papadopoulou V, Tresintsi S et al (2017b) Efficiency of iron-based oxy-hydroxides in removing antimony from groundwater to levels below the drinking water regulation limits. Sustainability 9:238.  https://doi.org/10.3390/su9020238 CrossRefGoogle Scholar
  134. Srivastava V, Weng CH, Singh VK, Sharma YC (2011) Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. J Chem Eng Data 56:1414–1422.  https://doi.org/10.1021/je101152b CrossRefGoogle Scholar
  135. Stancl HO, Hristovski K, Westerhoff P (2015) Hexavalent chromium removal using UV-TiO2/ceramic membrane reactor. Environ Eng Sci 32:676–683.  https://doi.org/10.1089/ees.2014.0507 CrossRefGoogle Scholar
  136. Sun H, Zhang X, Niu Q et al (2007) Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water Air Soil Pollut 178:245–254.  https://doi.org/10.1007/s11270-006-9194-y CrossRefGoogle Scholar
  137. Sun W, Li Q, Gao S, Shang JK (2012) Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part B. Integration with silica monoliths and dynamic treatment. Chem Eng J 185–186:136–143.  https://doi.org/10.1016/j.cej.2012.01.060 CrossRefGoogle Scholar
  138. Sun X, Yan Y, Li J et al (2014) SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity. J Hazard Mater 266:26–33.  https://doi.org/10.1016/j.jhazmat.2013.12.001 CrossRefGoogle Scholar
  139. Sun W, Pan W, Wang F, Xu N (2015) Removal of Se(IV) and Se(VI) by MFe2O4 nanoparticles from aqueous solution. Chem Eng J 273:353–362.  https://doi.org/10.1016/j.cej.2015.03.061 CrossRefGoogle Scholar
  140. Tan KL, Hameed BH (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74:25–48.  https://doi.org/10.1016/j.jtice.2017.01.024 CrossRefGoogle Scholar
  141. Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632.  https://doi.org/10.1016/j.watres.2013.02.039 CrossRefGoogle Scholar
  142. Tang W, Su Y, Li Q et al (2013) Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res 47:3624–3634.  https://doi.org/10.1016/j.watres.2013.04.023 CrossRefGoogle Scholar
  143. Tansel B (2012) Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep Purif Technol 86:119–126.  https://doi.org/10.1016/j.seppur.2011.10.033 CrossRefGoogle Scholar
  144. Toli A, Chalastara K, Mystrioti C et al (2016) Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters. Environ Pollut 214:419–429.  https://doi.org/10.1016/j.envpol.2016.04.034 CrossRefGoogle Scholar
  145. Tourinho PS, van Gestel CAM, Lofts S et al (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692.  https://doi.org/10.1002/etc.1880 CrossRefGoogle Scholar
  146. Tran HN, You S-J, Hosseini-Bandegharaei A, Chao H-P (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116.  https://doi.org/10.1016/j.watres.2017.04.014 CrossRefGoogle Scholar
  147. Tresintsi S, Simeonidis K, Vourlias G et al (2012) Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: study of Fe(II) oxidation–precipitation parameters. Water Res 46:5255–5267.  https://doi.org/10.1016/j.watres.2012.06.049 CrossRefGoogle Scholar
  148. Tresintsi S, Simeonidis K, Estradé S et al (2013) Tetravalent manganese feroxyhyte: a novel nanoadsorbent equally selective for As(III) and As(V) removal from drinking water. Environ Sci Technol 47:9699–9705.  https://doi.org/10.1021/es4009932 CrossRefGoogle Scholar
  149. Tresintsi S, Simeonidis K, Mitrakas M (2014a) Mn-feroxyhyte: the role of synthesis conditions on As(III) and As(V) removal capacity. Chem Eng J 251:192–198.  https://doi.org/10.1016/j.cej.2014.04.033 CrossRefGoogle Scholar
  150. Tresintsi S, Simeonidis K, Pliatsikas N et al (2014b) The role of SO4 2- surface distribution in arsenic removal by iron oxy-hydroxides. J Solid State Chem 213:145–151.  https://doi.org/10.1016/j.jssc.2014.02.026 CrossRefGoogle Scholar
  151. Tresintsi S, Mitrakas M, Simeonidis K, Kostoglou M (2015) Kinetic modeling of As(III) and As(V) adsorption by a novel tetravalent manganese feroxyhyte. J Colloid Interface Sci 460:1–7CrossRefGoogle Scholar
  152. Tu Y-J, You C-F, Chang C-K et al (2014) XANES evidence of molybdenum adsorption onto novel fabricated nano-magnetic CuFe2O4. Chem Eng J 244:343–349.  https://doi.org/10.1016/j.cej.2014.01.084 CrossRefGoogle Scholar
  153. Tu Y-J, Chan T-S, Tu H-W et al (2016) Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles. Chemosphere 148:452–458.  https://doi.org/10.1016/j.chemosphere.2016.01.054 CrossRefGoogle Scholar
  154. Türk T, Alp I (2014) Arsenic removal from aqueous solutions with Fe-hydrotalcite supported magnetite nanoparticle. J Ind Eng Chem 20:732–738.  https://doi.org/10.1016/j.jiec.2013.06.002 CrossRefGoogle Scholar
  155. Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 166:1415–1420.  https://doi.org/10.1016/j.jhazmat.2008.12.069 CrossRefGoogle Scholar
  156. U.S. EPA (1986) Test methods for evaluating solid wastes, toxicity characteristic leaching procedure (TCLP), method 1311 SW- 846, 3rd edn. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  157. Van Hoecke K, De Schamphelaere KAC, Ali Z et al (2013) Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology 7:37–47.  https://doi.org/10.3109/17435390.2011.626566 CrossRefGoogle Scholar
  158. Wang X, He M, Lin C et al (2012) Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite. Chem Erde-Geochem 72:41–47.  https://doi.org/10.1016/j.chemer.2012.02.002 CrossRefGoogle Scholar
  159. Wang Y, Liu D, Lu J, Huang J (2015) Enhanced adsorption of hexavalent chromium from aqueous solutions on facilely synthesized mesoporous iron–zirconium bimetal oxide. Colloids Surf A Physicochem Eng Asp 481:133–142.  https://doi.org/10.1016/j.colsurfa.2015.01.060 CrossRefGoogle Scholar
  160. Wang X, Le L, Wang A et al (2016a) Comparative study on properties, mechanisms of anionic dispersant modified nano zero-valent iron for removal of Cr(VI). J Taiwan Inst Chem Eng 66:115–125.  https://doi.org/10.1016/j.jtice.2016.05.049 CrossRefGoogle Scholar
  161. Wang Z, Zhang L, Zhao J, Xing B (2016b) Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environ Sci Nano 3:240–255.  https://doi.org/10.1039/C5EN00230C CrossRefGoogle Scholar
  162. Wei X, Bhojappa S, Lin L-S, Viadero RC (2012) Performance of nano-magnetite for removal of selenium from aqueous solutions. Environ Eng Sci 29:526–532.  https://doi.org/10.1089/ees.2011.0383 CrossRefGoogle Scholar
  163. Westerhoff P, Alvarez P, Li Q et al (2016) Overcoming implementation barriers for nanotechnology in drinking water treatment. Environ Sci Nano 3:1241–1253.  https://doi.org/10.1039/C6EN00183A CrossRefGoogle Scholar
  164. Xie Y, Wang Y, Giammar DE (2010) Impact of chlorine disinfectants on dissolution of the lead corrosion product PbO2. Environ Sci Technol 44:7082–7088.  https://doi.org/10.1021/es1016763 CrossRefGoogle Scholar
  165. Xu W, Wang J, Wang L et al (2013) Enhanced arsenic removal from water by hierarchically porous CeO2-ZrO2 nanospheres: role of surface- and structure-dependent properties. J Hazard Mater 260:498–507.  https://doi.org/10.1016/j.jhazmat.2013.06.010 CrossRefGoogle Scholar
  166. Yavuz CT, Mayo JT, Yu WW et al (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967.  https://doi.org/10.1126/science.1131475 CrossRefGoogle Scholar
  167. Yoon SH, Oh SE, Yang JE et al (2009) TiO2 photocatalytic oxidation mechanism of As(III). Environ Sci Technol 43:864–869.  https://doi.org/10.1021/es801480u CrossRefGoogle Scholar
  168. Yu L, Peng X, Ni F et al (2013) Arsenite removal from aqueous solutions by α-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J Hazard Mater 246–247:10–17.  https://doi.org/10.1016/j.jhazmat.2012.12.007 CrossRefGoogle Scholar
  169. Zhang L, Liu N, Yang L, Lin Q (2009) Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution. J Hazard Mater 170:1197–1203.  https://doi.org/10.1016/j.jhazmat.2009.05.098 CrossRefGoogle Scholar
  170. Zhang P, Ma Y, Zhang Z et al (2012) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6:9943–9950.  https://doi.org/10.1021/nn303543n CrossRefGoogle Scholar
  171. Zhao Z, Liu J, Cui F et al (2012) One pot synthesis of tunable Fe3O4-MnO2 core-shell nanoplates and their applications for water purification. J Mater Chem 22:9052–9057.  https://doi.org/10.1039/C2JM00153E CrossRefGoogle Scholar
  172. Zhao J, Liu J, Li N et al (2016) Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: adsorption behavior and process study. Chem Eng J 304:737–746.  https://doi.org/10.1016/j.cej.2016.07.003 CrossRefGoogle Scholar
  173. Zhou X, Lv B, Zhou Z et al (2015) Evaluation of highly active nanoscale zero-valent iron coupled with ultrasound for chromium(VI) removal. Chem Eng J 281:155–163.  https://doi.org/10.1016/j.cej.2015.06.089 CrossRefGoogle Scholar
  174. Zhu X, Zhu L, Duan Z et al (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:278–284.  https://doi.org/10.1080/10934520701792779 CrossRefGoogle Scholar
  175. Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596.  https://doi.org/10.1016/j.jhazmat.2009.08.031 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Konstantinos Simeonidis
    • 1
  • Carlos Martinez-Boubeta
    • 2
  • Paula Zamora-Perez
    • 2
  • Pilar Rivera-Gil
    • 3
  • Efthimia Kaprara
    • 1
  • Evgenios Kokkinos
    • 1
  • Manassis Mitrakas
    • 1
  1. 1.Department of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Integrative Biomedical Materials and Nanomedicine Laboratory, Department of Experimental and Health SciencesPompeu Fabra UniversityBarcelonaSpain
  3. 3.FreelancerBilbaoSpain

Personalised recommendations