Skip to main content

Part of the book series: SpringerBriefs in Petroleum Geoscience & Engineering ((BRIEFSPGE))

  • 387 Accesses

Abstract

Pore structures play a very critical role in the petroleum industry, which controls the capacity of oil and gas storage in the reservoir (Anovitz and Cole in Rev Miner Geochem 80(1):61–164, 2015). Pore with different properties such as pore size and pore shape can impact the physical, mechanical and chemical properties of the rocks including strength, elastic modulus, permeability, and conductivity (Boadu in J Appl Geophys 44(2–3):103–113, 2000; Sanyal et al. in Chem Eng Sci 61(2):307–315, 2006; Wang et al. in J Appl Geophys 86:70–81, 2012). Therefore, characterization and quantification of the pore structures appear to be crucial for reservoir development. The boom of the unconventional resources in the recent decade brought the attention of the many researchers’ attention. Shale oil formation is one of the typical unconventional reservoirs and the understanding of these kinds of formation is still limited. In comparison to the conventional reservoirs such as sandstone or limestone, the pore structures in shale reservoirs are more complex due to the abundance of the nano-pores. In this chapter, various kinds of methods are introduced and applied to analyze the micro structures of the shale oil formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allain C, Cloitre M (1991) Characterizing the lacunarity of random and deterministic fractal sets. Phys Rev Ann 44:3552–3558

    MathSciNet  Google Scholar 

  • Amankwah KAG, Schwarz JA (1995) A modified approach for estimating pseudo-vapor pressures in the application of the Dubinin-Astakhov equation. Carbon 33:1313–1319

    Article  Google Scholar 

  • Anovitz LM, Cole DR (2015) Characterization and analysis of porosity and pore structures. Rev Miner Geochem 80(1):61–164

    Article  Google Scholar 

  • Avnir D, Jaroniec M (1989) An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir 5(6):1431–1433

    Article  Google Scholar 

  • Backes AR (2013) A new approach to estimate lacunarity of texture images. Pattern Recognit Lett 34(13):1455–1461

    Article  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscopy. Phys Rev Lett 56(9):930–933

    Google Scholar 

  • Boadu FK (2000) Predicting the transport properties of fractured rocks from seismic information: numerical experiments. J Appl Geophys 44(2–3):103–113

    Article  Google Scholar 

  • Bogner A, Jouneau PH, Thollet G, Basset D, Gauthier C (2007) A history of scanning electron microscopy developments: towards “wet-STEM” imaging. Micron 38(4):390–401

    Article  Google Scholar 

  • Bruening FA, Cohen AD (2005) Measuring surface properties and oxidation of coal macerals using the atomic force microscope. Int J Coal Geol 63:195–204

    Article  Google Scholar 

  • Cai Y, Liu D, Yao Y et al (2011) Fractal characteristics of coal pores based on classic geometry and thermodynamics models. Acta Geol Sin (English) 85(5):1150–1162

    Article  Google Scholar 

  • Cao TT, Song ZG, Wang SB et al (2015) A comparative study of the specific surface area and pore structure of different shales and their kerogens. Sci China Earth Sci 58(4):510–522

    Article  Google Scholar 

  • Cao Z, Liu G, Zhan H et al (2016) Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors. Sci Rep-UK 6:36919

    Article  Google Scholar 

  • Chhabra A, Jensen RV (1989) Direction of determination of the f(a) singularity spectrum. Phys Rev Lett 62(12):1327–1330

    Article  MathSciNet  Google Scholar 

  • Costa EVL, Nogueira RA (2015) Fractal, multifractal and lacunarity analysis applied in retinal regions of diabetic patients with and without nonproliferative diabetic retinopathy. Fractal Geom Nonlinear Anal Med Biol 1(3):112–119

    Google Scholar 

  • Cox EP (1927) A method of assigning numerical and percentage values to the degree of roundness of sand grains. J Paleontol 1(3):179–183

    Google Scholar 

  • Do DD, Do HD (2003) Pore characterization of carbonaceous materials by DFT and GCMC simulations: a review. Adsorpt Sci Technol 21(5):389–423

    Article  Google Scholar 

  • Fan L, Ziegler T (1992) Nonlocal density functional theory as a practical tool in calculations on transition states and activation energies. Applications to elementary reaction steps in organic chemistry. J Am Chem Soc 114:10890–10897

    Article  Google Scholar 

  • Feder J (1988) Fractals. Plenum Press, New York

    Book  MATH  Google Scholar 

  • Goldstein JI, Newbury DE, Echlin P (1981) Scanning electron microscopy and X-ray microanalysis. A text for biologists, material scientists, and geologists, Plenum Press, New York, 673 p

    Google Scholar 

  • Groen JC, Peffer LAA, Pérez-Ramı́rez J (2003) Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor Mesopor Mat 60(1):1–17

    Google Scholar 

  • Halsey TC, Hensen MH, Kadanoff LP et al (1986) Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 33(2):1141–1151

    Article  MathSciNet  MATH  Google Scholar 

  • Hirono T, Lin W, Nakashima S (2006) Pore space visualization of rocks using an atomic force microscope. Int J Rock Mech Min Sci 43:317–320

    Article  Google Scholar 

  • Houben ME, Desbois G, Urai JL (2014) A comparative study of representative 2D microstructures in Shale and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred from BIB-SEM and MIP methods. Mar Pet Geol 49:143–161

    Article  Google Scholar 

  • Hu MG, Wang JF, Ge Y (2009) Super-resolution reconstruction of remote sensing images using multifractal analysis. Sensors 9(11):8669–8683

    Article  Google Scholar 

  • Javadpour F (2009) CO2 injection in geological formations: determining macroscale coefficients from pore scale processes. Transp Porous Med 79:87–105

    Article  Google Scholar 

  • Javadpour F, Farshi MM, Amrein M (2012) Atomic force microscopy: a new tool for gas-shale characterization. J Can Pet Technol 51(04):236–243

    Google Scholar 

  • Joos J, Carraro T, Weber A, Ivers-Tiffée E (2011) Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling. J Power Sour 196(17):7302–7307

    Google Scholar 

  • Khalili NR, Pan M, Sandi G (2000) Determination of fractal dimensions of solid carbons from gas and liquid phase adsorption isotherms. Carbon 38(4):573–588

    Google Scholar 

  • Kuila U, Prasad M (2013) Specific surface area and pore-size distribution in clays and shales. Geophys Prospect 61(2):341–362

    Google Scholar 

  • Labani MM, Rezaee R, Saeedi A et al (2013) Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: a case study from the Perth and Canning Basins, Western Australia. J Petrol Sci Eng 112:7–16

    Google Scholar 

  • Li L, Chang L, Le S, Huang D (2012) Multifractal analysis and lacunarity analysis: A promising method for the automated assessment of muskmelon (Cucumis melo L.) epidermis netting. Comput Electron Agric 88:72–84

    Google Scholar 

  • Liu K, Ostadhassan M (2017a) Quantification of the microstructures of Bakken shale reservoirs using multi-fractal and lacunarity analysis. J Nat Gas Sci Eng 39:62–71

    Google Scholar 

  • Liu K, Ostadhassan M (2017b) Microstructural and geomechanical analysis of Bakken shale at nanoscale. J Pet Sci Eng 153:133–144

    Google Scholar 

  • Liu K, Ostadhassan M (2017c) Multi-scale fractal analysis of pores in shale rocks. J Appl Geophys 140:1–10

    Google Scholar 

  • Liu K, Ostadhassan M, Bubach B (2016a) Pore structure analysis by using atomic force microscopy. URTEC 2448210

    Google Scholar 

  • Liu K, Ostadhassan M, Jabbari H, Bubach B (2016b) Potential application of atomic force microscopy in characterization of nano-pore structures of Bakken formation. In: Society of petroleum engineers, 2016

    Google Scholar 

  • Liu K, Ostadhassan M, Zhou J, Gentzis T, Rezaee R (2017) Nanoscale pore structure characterization of the Bakken shale in the USA. Fuel 209:567–578

    Google Scholar 

  • Lopes R, Betrouni N (2009) Fractal and multifractal analysis: a review. Med Image Anal 13(4):634–649

    Google Scholar 

  • Malhi Y, Román-Cuesta RM (2008) Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies. Remote Sens Environ 112(5):2074–2087

    Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. WH Freeman & Co., New York

    Google Scholar 

  • Mendoza F, Verboven P, Ho QT et al (2010) Multifractal properties of pore-size distribution in apple tissue using X-ray imaging. J Food Eng 99(2):206–215

    Google Scholar 

  • Plotnick RE, Gardner RH, O’Neill RV (1993) Lacunarity indices as measures of landscape texture. Lands Ecol 8(3):201–211

    Google Scholar 

  • Qi H, Ma J, Wong P (2002) Adsorption isotherms of fractal surfaces. Colloid Surf A 206(1):401–407

    Google Scholar 

  • Ravikovitch PI, Haller GL, Neimark AV (1998) Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts. Adv Colloid Interfac 76:203–226

    Google Scholar 

  • Russel DA, Hanson J, Ott E (1980) Dimension of strange attractors. Phys Rev Lett 45(14):1175–1178

    Google Scholar 

  • Sahouli B, Blacher S, Brouers F (1997) Applicability of the fractal FHH equation. Langmuir 13(16):4391–4394

    Google Scholar 

  • Sanyal D, Ramachandrarao P, Gupta OP (2006) A fractal description of transport phenomena in dendritic porous network. Chem Eng Sci 61(2):307–315

    Google Scholar 

  • Schmitt M, Fernandes CP, da Cunha Neto JAB et al (2013) Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques. Mar Pet Geol 39(1):138–149

    Google Scholar 

  • Shi K, Liu CQ, Ai NS (2009) Monofractal and multifractal approaches in investigating temporal variation of air pollution indexes. Fractals 17:513–521

    Google Scholar 

  • Smith TG, Lange GD, Marks WB (1996) Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals. J Neurosci Methods 69(2):123–136

    Google Scholar 

  • Sorelli L, Constantinides G, Ulm F-J, Toutlemonde F (2008) The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques. Cem Concr Res 38(12):1447–1456

    Google Scholar 

  • Sun M, Yu B, Hu Q et al (2016) Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation Shale: a case study from Well Yuke# 1 in the Southeast of Chongqing, China. Int J Coal Geol 154:16–29

    Google Scholar 

  • Takashimizu Y, Iiyoshi M (2016) New parameter of roundness R: circularity corrected by aspect ratio. Prog Earth Planet Sci 3(1):1–16

    Google Scholar 

  • Tang P, Chew NYK, Chan HK et al (2003) Limitation of determination of surface fractal dimension using N2 adsorption isotherms and modified Frenkel–Halsey–Hill theory. Langmuir 19(7):2632–2638

    Google Scholar 

  • Tang X, Jiang Z, Jiang S et al (2016) Effect of organic matter and maturity on pore size distribution and gas storage capacity in high-mature to post-mature shales. Energy Fuels 30(11):8985–8996

    Google Scholar 

  • Ulm FJ, Vandamme M, Bobko C et al (2007) Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. J Am Ceram Soc 90(9):2677–2692

    Google Scholar 

  • Vasseur J et al (2015) Heterogeneity: the key to failure forecasting. Sci Rep 5:13259

    Google Scholar 

  • Wang H et al (2012) Fractal analysis and its impact factors on pore structure of artificial cores based on the images obtained using magnetic resonance imaging. J Appl Geophys 86:70–81

    Google Scholar 

  • Wong HS, Head MK, Buenfeld NR (2006) Pore segmentation of cement-based materials from backscattered electron images. Cem Concr Res 36(6):1083–1090

    Google Scholar 

  • Yao Y, Liu D, Tang D et al (2008) Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals. Int J Coal Geol 73(1):27–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ostadhassan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostadhassan, M., Liu, K., Li, C., Khatibi, S. (2018). Pore Structures. In: Fine Scale Characterization of Shale Reservoirs. SpringerBriefs in Petroleum Geoscience & Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-76087-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76087-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76086-5

  • Online ISBN: 978-3-319-76087-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics