Skip to main content

Path Estimation from Smartphone Sensors

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 769))

Abstract

Nowadays the knowledge about position is very important for localization based services. Thanks to knowing the position many services can be provided, such as information about people in our surrounding, firemen can be navigated during movement while rescue action, or just simply tracking position of different things in buildings. Global Navigation Satellite System (GNSS) was commonly used in outdoor environment, but if we are in a building GNSSs are unusable. This is mainly because of multipath propagation which can cause huge localization errors. Therefore, many research teams have started to develop different systems for location estimation in indoor environment. In this work, we proposed position estimation system based on inertial sensors in smartphone with average accuracy below 0.6 m.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Machaj, J., Brida, P.: Optimization of rank based fingerprinting localization algorithm. In: International Conference on Indoor Positioning and Indoor Navigation, January 2013

    Google Scholar 

  2. Ding, H., Zheng, Z., Zhang, Y.: AP weighted multiple matching nearest neighbors approach for fingerprint-based indoor localization. In: 4th International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services, January 2017

    Google Scholar 

  3. Machaj, J., Brida, P., Piche, R.: Rank based fingerprinting algorithm for indoor positioning. In: International Conference on Indoor Positioning and Indoor Navigation, November 2011

    Google Scholar 

  4. Bobkowska, K., Inglot, A., Mikusova, M., et al.: Implementation of spatial information for monitoring and analysis of the area around the port using laser scanning techniques. Pol. Marit. Res. 24(1), 10–15 (2017)

    Google Scholar 

  5. Levi, R.W., Judd, T.: Dead reckoning navigational system using accelerometer to measure foot impacts. United States Patent No. 5583776 A (1996)

    Google Scholar 

  6. Davidson, P.: Algorithms for autonomous personal navigation system. Juvenes Print TTY, Tampere (2013). ISBN: 978-952-15-3174-3

    Google Scholar 

  7. Renaudin, V., Combettes, Ch., Peyret, F.: Quaternion based heading estimation with handheld MEMS in indoor environment. In: IEEE/ION Position, Location and Navigation Symposium, pp. 645–656, May 2014

    Google Scholar 

  8. Kang, W., Nam, S., Han, Y., Lee, S.: Improved heading estimation for smartphone-based indoor positioning systems. In: IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 2249–2453, September 2012

    Google Scholar 

  9. Liew, L.S., Wong, W.S.H.: Improved pedestrian dead-reckoning based indoor positioning by RSSI based heading correction. Sens. J. 16(21) (2016)

    Google Scholar 

  10. Loh, D., Zihajehzadeh, S., Hoskinson, R., Abdollahi, H., Park, E.J.: Pedestrian dead reckoning with smartglasses and smartwatch. Sens. J. 16(22) (2017)

    Google Scholar 

  11. Lu, Q., Liao, X., Xu, S., Zhu, W.: A hybrid indoor positioning algorithm based on wifi fingerprinting and pedestrian dead reckoning. In: 27th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, December 2016

    Google Scholar 

  12. Bojja, J., Parviainan, J., Collin, J., Hellevaara, R., Kappi, J., Alanen, K., Takala, J.: Robust misalignment handling in pedestrian dead reckoning. In: 84th Vehicular Technology Conference, March 2017

    Google Scholar 

  13. Leppakoski, H., Collin, J., Takala, J.: Pedestrian navigation based on inertial sensors, indoor map, and WLAN signals. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1569–1572, March 2012

    Google Scholar 

  14. Elbes, M., Al-Fuqaha, A., Rayes, A.: Gyroscope drift correction based on TDoA technology in support of pedestrian dead reckoning. In: IEEE Globecom Workshop, pp. 314–319, December 2012

    Google Scholar 

  15. Wang, F., Lin, Y.: Improving particle filter with a new sampling strategy. In: 4th International Conference on Computer Science & Education, pp. 408–412, July 2009

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Slovak VEGA grant agency, Project No. 1/0263/16 and by project “Smart Solutions for Ubiquitous Computing Environments” FIM, University of Hradec Kralove, Czech Republic (under ID: UHK-FIM-SP-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Brida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Racko, J., Brida, P., Machaj, J., Krejcar, O. (2018). Path Estimation from Smartphone Sensors. In: Sieminski, A., Kozierkiewicz, A., Nunez, M., Ha, Q. (eds) Modern Approaches for Intelligent Information and Database Systems. Studies in Computational Intelligence, vol 769. Springer, Cham. https://doi.org/10.1007/978-3-319-76081-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76081-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76080-3

  • Online ISBN: 978-3-319-76081-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics