Skip to main content

Breast Cancer Detection Using Modern Visual IT Techniques

  • Chapter
  • First Online:
Modern Approaches for Intelligent Information and Database Systems

Abstract

Nowadays, cancer is a major cause of women death, especially breast cancer which is most seen on ladies older than 40 years. As we know, several techniques have been developed to fight breast cancer, like a mammography, which is the preferred screening examination for breast cancer. However, despite mammography test showing negative result, there are still patients with breast cancer diagnostic, found by other tests like ultrasound test. It can be explained by potential side effect of using mammography, which can push patients and doctors to look for other diagnostic technique. In this literature review, we will explore the digital infrared imaging which is based on the principle that metabolic activity and vascular circulation, in both pre-cancerous tissue and the area surrounding a developing breast cancer, is almost always higher than in normal breast tissue. In the same way, an automated infrared image processing of patient cannot be done without a model like the hemispheric model, which is very well known. As novelty, we will give a comparative study of breast cancer detection using modern visual IT techniques view by the perspective of computer scientist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breast Cancer Facts, National Breast Cancer Foundation (2016)

    Google Scholar 

  2. Dongola, N.: Mammography in Breast Cancer. Medscape Logo (2016)

    Google Scholar 

  3. Köşüş, N., Köşüş, A., Duran, M., Simavlı, S., Turhan, N.: Comparison of standard mammography with digital mammography and digital infrared thermal imaging for breast cancer screening. J. Turk. Ger. Gynecol. Assoc. (2010)

    Google Scholar 

  4. Li, S., Johnson, J., Peck, A., Xie, Q.: Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles. J. Trans. Med. (2017)

    Google Scholar 

  5. Amria, A., Pulko, S.H., Wilk, A.J.: Potentialities of steady-state and transient thermography in breast tumour depth detection: a numerical study. Comput. Methods Programs Biomed. (2016)

    Google Scholar 

  6. Boogerd, L.S.F., Handgraaf, H.J.M., Lam, H.-D., Huurman, V.A.L., Farina-Sarasqueta, A., Frangioni, J.V., van de Velde, C.J.H., Braat, A.E., Vahrmeijer, A.L.: Laparoscopic detection and resection of occult liver tumors of multiple cancer types using real-time near-infrared fluorescence guidance. Surg. Endosc. (2017)

    Google Scholar 

  7. Kandlikar, S.G., Perez-Raya, I., Raghupathi, P.A., Gonzalez-Hernandez, J.L., Dabydeen, D., Medeiros, L., Phatak, P.: Infrared imaging technology for breast cancer detection—Current status, protocols and new directions. Int. J. Heat Mass Trans. (2017)

    Google Scholar 

  8. Tsutomu Namikawa, T.S.: Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green. Surg. Today (2015)

    Google Scholar 

  9. Kontos, M., Wilson, R., Fentiman, I.: Digital infrared thermal imaging (DITI) of breast lesions: sensitivity and specificity of detection of primary breast cancers. Clin. Radiol. (2011)

    Google Scholar 

  10. Łyszczarz, B., Nojszewska, E.: Productivity losses and public finance burden attributable to breast cancer in Poland, 2010–2014. BMC Cancer 17(1), 676 (2017)

    Google Scholar 

  11. National Oncology Program. Czech Oncological Society (2011)

    Google Scholar 

  12. Unar-Munguía, M., Meza, R., Colchero, M.A., et al.: Economic and disease burden of breast cancer associated with suboptimal breastfeeding practices in Mexico. Cancer Causes Control (2017)

    Google Scholar 

  13. Boquete, L., Ortega, S., Miguel-Jiménez, J.M., Rodríguez-Ascariz, J.M.: Automated detection of breast cancer in thermal infrared images, based on independent component analysis. J. Med. Syst. (2012)

    Google Scholar 

  14. Kubicek, J., Bryjova, I., Faltynova, K., Penhaker, M., Augustynek, M., Maresova, P.: Evaluation of gama analysis results significance within verification of radiation IMRT plans in radiotherapy. Lecture Notes in Computer Science, vol. 10449, pp. 541–548 (2017). https://doi.org/10.1007/978-3-319-67077-5_52

  15. Augustynek, M., Korpas, D., Penhaker, M., Cvek, J., Binarova, A.: Monitoring of CRT-D devices during radiation therapy in vitro. BioMedical Engineering Online, 15 (1), article no. 29 (2016). https://doi.org/10.1186/s12938-016-0144-7

  16. Smidova, I.: Alcohol and breast cancer—economic costs. Hygiena 51(1), 17–21 (2012)

    Google Scholar 

  17. Gustavsen, G., Schroeder, B., Kennedy, P., et al.: Health economic analysis of breast cancer index in patients with ER+, LN− breast cancer. Am. J. Manag. Care 20(8), 1 (2014)

    Google Scholar 

  18. Kim, Y.A., Oh, I.H., Yoon, S.J., et al.: The economic burden of breast cancer in Korea from 2007–2010. Cancer Res. Treat. 47(4), 583–590 (2015)

    Article  Google Scholar 

  19. Bryjova, I., Kubicek, J., Molnarova, K., Peter, L., Penhaker, M., Kuca, K.: Multiregional segmentation modeling in medical ultrasonography: extraction, modeling and quantification of skin layers and hypertrophic scars. Lecture Notes in Computer Science, vol. 10449, LNAI, pp. 182–192 (2017). https://doi.org/10.1007/978-3-319-67077-5_18

  20. IMS Health, MIDAS, Dec 2015; Market Prognosis, Mar 2016. IMS Institute for Healthcare Informatics, May 2016

    Google Scholar 

  21. Cardoso, F., Harbeck, N., Bergh, J., Cortés, J.: Research needs in breast cancer. Ann. Oncol. (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by internal students project at FIM, University of Hradec Kralove, Czech Republic (under ID: UHK-FIM-SP-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mambou, S., Maresova, P., Krejcar, O., Selamat, A., Kuca, K. (2018). Breast Cancer Detection Using Modern Visual IT Techniques. In: Sieminski, A., Kozierkiewicz, A., Nunez, M., Ha, Q. (eds) Modern Approaches for Intelligent Information and Database Systems. Studies in Computational Intelligence, vol 769. Springer, Cham. https://doi.org/10.1007/978-3-319-76081-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76081-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76080-3

  • Online ISBN: 978-3-319-76081-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics