Advertisement

Mechanical Machining

  • Kaushik Kumar
  • Divya Zindani
  • J. Paulo Davim
Chapter
Part of the Materials Forming, Machining and Tribology book series (MFMT)

Abstract

The typical examples of mechanical machining are ultrasonic machining and water jet machining. Mechanical abrasion is the main mechanism for the material removal in case of ultrasonic machining whereas in case of water jet machining it is the cutting action of the fluid jet. The medium under which the machining takes place is abrasive slurry in case of ultrasonic machining while the water jet machining is performed in the presence of fluid. The present chapter describes the different mechanical nontraditional processes.

References

  1. V.I. Babitsky, A.V. Mitrofanov, V.V. Silverschmidt, Ultrasonically assisted turning of aviation materials: simulations and experimental study. Ultrasonics 42, 81–86 (2004)CrossRefGoogle Scholar
  2. L.A. Balamuth, Ultrasonic assistance to conventional metal removal. Ultrasonics 4, 125–130 (1966)CrossRefGoogle Scholar
  3. M.M. Barash, D. Watanapongse, On the effect of ambient pressure on the rate of material removal in ultrasonic machining. Int. J. Mech. Sci. 12, 775–779 (1970)CrossRefGoogle Scholar
  4. G.F. Benedict, Non-Traditional Manufacturing Processes (Marcel Dekker Inc., New York, 1987), pp. 67–86Google Scholar
  5. T.J. Bulat, Micro-Sonics in Industry: Ultrasonic Cleaning, Bendix and Life Supports Division Publication, USA, 120.10.153: 13 (1974)Google Scholar
  6. S. Chang, G.M. Bone, Burr size reduction in drilling by ultrasonic assistance. Robot. Comput. Integr. Manuf. 120, 442–450 (2005)CrossRefGoogle Scholar
  7. F.L. Chen, E. Siores, The effect of cutting jet variation on striation formation in abrasive water jet cutting. Int. J. Mach. Tools Manuf 41(10), 1479–1486 (2001)CrossRefGoogle Scholar
  8. G.S. Choi, G.H. Choi, Process analysis and monitoring in abrasive water jet machining of alumina ceramics. Int. J. Mach. Tools Manuf. 37(3), 295–307 (1997)CrossRefGoogle Scholar
  9. N.H. Cook, Manufacturing Analysis (Addison-Wesley, New York, 1966), pp. 133–148Google Scholar
  10. W.L. Cong, Z.J. Pei, C. Treadwell, Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks. Ultrasonics 54(6), 1594–1602 (2014)CrossRefGoogle Scholar
  11. J. Deng, T. Lee, Ultrasonic machining of alumina based ceramic composites. J. Eur. Ceram. Soc. 22(8), 1235–1241 (2002)CrossRefGoogle Scholar
  12. F.T. Farago, Abrasives methods engineering. Indus. Press 2, 480–481 (1980)Google Scholar
  13. F. Farzin-Nia, T. Sterrett, Effect of machining on fracture toughness of corundum. J. Mater. Sci. 25(5), 2527–2531 (1990)CrossRefGoogle Scholar
  14. J.R. Frederick, Ultrasonic Engineering (Wiley, New York, 1965), pp. 32–45Google Scholar
  15. G. Fowler, I.R. Pashby, P.H. Shipway, The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266(7), 613–620 (2009)CrossRefGoogle Scholar
  16. R. Gilmore, Ultrasonic machining and orbital abrasion techniques. SME Technical Paper (series) AIR, NM89–419: 1–20 ((1989Google Scholar
  17. D. Goetze, Effect of vibration amplitude, frequency, and composition of the abrasive slurry on the rate of ultrasonic machining in Ketos Tool Steel. J. Acoust. Soc. America 28(6), 1033–1045 (1956)CrossRefGoogle Scholar
  18. K.F. Graff, Macrosonics in industry: ultrasonic machining. Ultrasonics 13, 103–109 (1975)CrossRefGoogle Scholar
  19. A. Gupta, Performance optimization of abrasive fluid jet for completion and stimulation of oil and gas wells. J. Energy Res. Technol. 134(2), 021001 (2012)CrossRefGoogle Scholar
  20. M. Hashish, A modeling study of metal cutting with abrasive waterjets. J. Eng. Mater. Technol. 106(1), 88–100 (1984)CrossRefGoogle Scholar
  21. M. Hashish, Visualization of the abrasive-waterjet cutting process. Exp. Mech. 28(2),159–169 15 (1988)Google Scholar
  22. M. Hashish, A model for abrasive-waterjet (AWJ) machining. J. Eng. Mater. Technol. 111(2), 154–162 16 (1989a)CrossRefGoogle Scholar
  23. M. Hashish, Pressure effects in abrasive-waterjet (AWJ) machining. J. Eng. Mater. Technol. 111(3), 221–228 (1989b)MathSciNetCrossRefGoogle Scholar
  24. M. Hashish, Characteristics of surfaces machined with abrasive-waterjets. J. Eng. Mater. Technol. 113(3), 354–362 (1991a)CrossRefGoogle Scholar
  25. M. Hashish, Optimization factors in abrasive-waterjet machining. J. Eng. İnd. 113(1), 29–37 (1991b)Google Scholar
  26. M. Hashish, Effect of abrasive waterjet parameters on volume removal trends in turning. J. Eng. İnd. 117, 475 (1995)Google Scholar
  27. L.M. Hlaváč, I.M. Hlaváčová, L. Gembalová, J. Kaličinský, S. Fabian, J. Měšťánek, V. Mádr, Experimental method for the investigation of the abrasive water jet cutting quality. J. Mater. Process. Technol. 209(20), 6190–6195 (2009)CrossRefGoogle Scholar
  28. P. Hu, J.M. Zhang, Z.J. Pei, C. Treadwell, Modeling of material removal rate in rotary ultrasonic machining: designed experiments. J. Mater. Process. Technol. 129, 339–344 (2002)CrossRefGoogle Scholar
  29. K. Ishikawa, H. Suwabe, T. Nishide, M. Uneda, A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials. Prec. Eng. 22, 197–206 (1998)CrossRefGoogle Scholar
  30. Y. Jiao, W.J. Liu, Z.J. Pei, X.J. Xin, C. Treadwell, Study on edge chipping in rotary ultrasonic machining of ceramics: an integration of designed experiments and finite element method analysis. J. Manuf. Sci. Eng. 127(4), 752–758 (2005)CrossRefGoogle Scholar
  31. E. Kai, M. Takahira, Micro ultrasonic machining by application of work-piece vibration. CIRP Ann. 48(1), 131–134 (1999)CrossRefGoogle Scholar
  32. G.S. Kainth, A. Nandy, K. Singh, On the mechanisms of material removal in ultrasonic machining. Int. J. Mach. Tool Des. 19, 33–41 (1979)CrossRefGoogle Scholar
  33. F. Kartal, H. Gökkaya, Aşındırıcı Su Jeti ile Tornalama Deney Düzeneği Tasarımı. In International Iron & Steel Symposium Karabük, Türkiye (2012)Google Scholar
  34. F. Kartal, M.H. Çetin, H. Gökkaya, Z. Yerlikaya, Optimization of abrasive water jet turning parameters for machining of low density polyethylene material based on experimental design method. Int. Polym. Proc. 29(4), 535–544 (2014)CrossRefGoogle Scholar
  35. V.F. Kazantsev, The relationship between output and machining conditions in ultrasonic machining. Mach. Tool. 34, 14–17 (1963)Google Scholar
  36. V.F. Kazantsev, Improving the output and accuracy of ultrasonic machining. Mach. Tool. 37(4), 33–39 (1966)Google Scholar
  37. D.C. Kennedy, R.J. Grieve, Ultrasonic machining—a review. Prod. Eng. 54(9), 481–486 (1975)CrossRefGoogle Scholar
  38. L. Koops, Investigation into the influence of the wear of abrasive powder on the technological indices of ultrasonic machining. Ann. CIRP 13(3), 151–157 (1964)Google Scholar
  39. D. Kremer, The state of the art of ultrasonic machining. Ann. CIRP 30, 107–115 (1981)CrossRefGoogle Scholar
  40. J.B. Kohals, Ultrasonic manufacturing process-ultrasonic machining and ultrasonic impact grinding (USIG). The Carbide and Tool J. 16(5), 12–15 (1984)Google Scholar
  41. M. Komaraiah, P.N. Reddy, A study on the influence of workpiece properties in ultrasonic machining. Int. J. Mach. Tools Manuf. 33, 495–505 (1993a)Google Scholar
  42. M. Komariah, P.N. Reddy, Relative performance of tool materials in ultrasonic machining. Wear 161(1–2), 1–10 (1993b)Google Scholar
  43. R. Kovacevic, A new sensing system to monitor abrasive waterjet nozzle wear. J. Mater. Process. Technol. 28(1–2), 117–125 (1991)CrossRefGoogle Scholar
  44. R. Kovacevic, M. Hashish, R. Mohan, M. Ramulu, T.J. Kim, E.S. Geskin, State of the art of research and development in abrasive waterjet machining. J. Manuf. Sci. Eng. 119(4B), 776–785 (1997)CrossRefGoogle Scholar
  45. J. Kumar, J.S. Khamba, An experimental study on ultrasonic machining of pure titanium using designed experiments. J. Brazilian Soc. Mech. Sci. Eng. 30(3), 231–238 (2008)CrossRefGoogle Scholar
  46. J. Kumar, J.S. Khamba, S.K. Mohapatra, An investigation into the machining characteristics of titanium using ultrasonic machining. Int. J. Mach. Mach. Mater. 3(1–2), 143–161 (2008)Google Scholar
  47. A. Kumar, V. Kumar, J. Kumar, Prediction of surface roughness in wire electric discharge machining (WEDM) process based on response surface methodology. Int. J. Eng. Technol. 2(4), 708–712 (2012)Google Scholar
  48. A. Kumar, V. Kumar, J. Kumar, Investigation of machining parameters and surface integrity in wire electric discharge machining (WEDM) of pure titanium. In Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (2013a)  https://doi.org/10.1177/0954405413479791
  49. A. Kumar, V. Kumar, J. Kumar, Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process. In International Journal of Advanced Manufacturing Technology (2013b)  https://doi.org/10.1007/s00170-013-4861-9
  50. H. Kumehara, Characteristics of threaded joints in ultrasonic vibrating system. Bull. JSME 27(223), 117–123 (1984)CrossRefGoogle Scholar
  51. S. Kunaporn, M. Ramulu, M. Hashish, Mathematical modeling of ultra-high-pressure waterjet peening. J. Eng. Mater. Technol. 127(2), 186–191 (2005)CrossRefGoogle Scholar
  52. Z.C. Li, Wu-L Cai, Z.J. Pei, C. Treadwell, Edge chipping reduction in rotary ultrasonic machining of ceramics: finite element analysis and experimental verification. Int. J. Mach. Tools Manuf. 46(12–13), 1469–1477 (2005)Google Scholar
  53. W.Y. Li, J. Wang, Y.M. Ali, An experimental study of radial-mode abrasive waterjet turning of steels. Mater. Sci. Orum 697, 166–170 (2012)Google Scholar
  54. Z. Liang, Y. Wu, X. Wang, W. Zhao, A new two dimensional ultrasonic assisted grinding (UAG) method and its fundamental performance in monocrystal silicon machining. Int. J. Mach. Tools Manuf. 50, 728–736 (2010)CrossRefGoogle Scholar
  55. H. Liu, J. Wang, N. Kelson, R.J. Brown, A study of abrasive waterjet characteristics by CFD simulation. J. Mater. Process. Technol. 153, 488–493 (2004)CrossRefGoogle Scholar
  56. T.C. Lee, C.W. Chan, Mechanism of the ultrasonic machining of ceramic composites. J. Mater. Process. Technol. 71, 195–201 (1997)CrossRefGoogle Scholar
  57. C. Ma, R.T. Deam, A correlation for predicting the kerf profile from abrasive water jet cutting. Exp. Thermal Fluid Sci. 30(4), 337–343 (2006)CrossRefGoogle Scholar
  58. M.A. Majeed, L. Vijayaraghvan, S.K. Malhotra, R. KrishnaMurthy, Ultrasonic machining of Al2O3/LaPO4 composites. Int. J. Mach. Tools Manuf. 48, 40–46 (2008)CrossRefGoogle Scholar
  59. A.I. Markov, Kinematics of the dimensional ultrasonic machining method. Mach. Tool. 30(10), 28–31 (1959)Google Scholar
  60. A.I. Markov, Ultrasonic drilling and milling of hard non-metallic materials with diamond tools. Mach. Tool. 48(9), 45–47 (1977)Google Scholar
  61. L.G. Merkulov, Design of ultrasonic concentrations. Akusticheskiy Zhurnal 3, 246–255 (1957)Google Scholar
  62. G.E. Miller, Special theory of ultrasonic machining. J. Appl. Phys. 28(2), 149–156 (1957)CrossRefGoogle Scholar
  63. A.W. Momber, R. Kovacevic, Principles of abrasive water jet machining (Springer Science & Business Media, USA, 2012)zbMATHGoogle Scholar
  64. D. Moore, Ultrasonic impact grinding. In Proceedings Non-Traditional Machining Conference, Cinicinnati, OH, USA, 1985, pp. 137–139Google Scholar
  65. E.V. Nair, A. Ghosh, A fundamental approach to the study of mechanics of ultrasonic machining. Int. J. Prod. Res. 23, 731–753 (1985)Google Scholar
  66. M. Nanduri, D.G. Taggart, T.J. Kim, A study of nozzle wear in abrasive entrained water jetting environment. J. Tribol. 122(2), 465–471 (2000)CrossRefGoogle Scholar
  67. M. Nanduri, D.G. Taggart, T.J. Kim, The effects of system and geometric parameters on abrasive water jet nozzle wear. Int. J. Mach. Tools Manuf. 42(5), 615–623 (2002)CrossRefGoogle Scholar
  68. E.A. Neppiras, Ultrasonic machining and forming. Ultrasonics. 2(4), 167–173 (1964)CrossRefGoogle Scholar
  69. G. Nishimura, Ultrasonic machining—Part I. J. Fract. Eng. Tokyo University 24(3), 65–100 (1954)Google Scholar
  70. E.A. Neppiras, Ultrasonic machining-II. Operating conditions and performance of ultrasonic drills. Philips Technol. Rev. 18(12), 368–379 (1957)Google Scholar
  71. P.C. Pandey, H.S. Shan, Modern Machining Processes (Tata McGraw-Hill, New Delhi, 1980), pp. 7–38Google Scholar
  72. Z.J. Pei, N. Khanna, P.M. Ferreira, Rotary ultrasonic machining of structural ceramics—a review. Ceram. Eng. Sci. Proc. 16(1), 259–278 (1995)CrossRefGoogle Scholar
  73. Z.J. Pei, P.M. Ferreira, An experimental investigation of rotary ultrasonic face milling. Int. J. Mach. Tools Manuf. 39(8), 1327–1344 (1999)CrossRefGoogle Scholar
  74. E.W. Pentland, J.A. Ektermanis, Improving ultrasonic machining rates—some feasibility studies. J. Eng. Indus. Trans. ASME 87, 39–46 (1965)CrossRefGoogle Scholar
  75. D. Prabhakar, M. Haselkorn, An experimental investigation of material removal rates in rotary ultrasonic machining. Trans. NAMRI = SME, 20, 211–218 (1992)Google Scholar
  76. M. Ramulu, D. Arola, Water jet and abrasive water jet cutting of unidirectional graphite/epoxy composite. Composites 24(4), 299–308 (1993)CrossRefGoogle Scholar
  77. M. Ramulu, Ultrasonic machining effects on the surface finish and strength of silicon carbide ceramics. Int. J. Manuf. Technol. Manag. 7(2/3/4), 107–125 (2005)Google Scholar
  78. V. Riddie, Cavitation erosion—a survey of the literature 1940–1970. Wear 23, 133–137 (1973)CrossRefGoogle Scholar
  79. L.D. Rozenberg, V.F. Kazantsev, L.O. Makarov, Ultrasonic Cutting (Consultant Bureau, New York, 1964), pp. 97–102Google Scholar
  80. L.D. Rozenberg, Physical Principles of Ultrasonic Technology, 1–2 (Plenum Press, New York, 1973), pp. 20–53CrossRefGoogle Scholar
  81. J. Saha, A. Bhattacharya, P.K. Mishra, Estimation of material removal rates in USM process—a theoretical and experimental study. In Proceedings 27th International Matador Conference Manchester, England, 31–46 (1988)Google Scholar
  82. A. Sharma, S. Mishiro, K. Suzuki, T. Imai, A new longitudinal mode ultrasonic transducer with an eccentric horn for micro machining. Key Eng. Mater. 238–239, 147–152 (2003)CrossRefGoogle Scholar
  83. M.C. Shaw, Ultrasonic grinding. Ann. CIRP 5, 25–53 (1956)Google Scholar
  84. R. Snoyes, Non-conventional machining techniques: the state of art. Adv. Non-Trad. Mach. ASME, 1–20 (1986)Google Scholar
  85. V. Soundrajan, V. Radhakrishnan, An experimental investigation on the basic mechanisms involved in the ultrasonic machining. Int. J. Mach. Tool Des. Res. 26(3), 307–321 (1986)CrossRefGoogle Scholar
  86. P.S. Sreejith, B.K.A. Ngoi, Material removal mechanisms in precision machining of new materials. Int. J. Mach. Tools Manuf 41, 1831–1843 (2001)CrossRefGoogle Scholar
  87. T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, The effect of operating parameters on ultrasonic contour machining. In Proceedings 12th Annual Conference of the Irish Manufacturing Committee, Cork, Ireland, Sep., 1995, pp. 305–312 (1995)Google Scholar
  88. T.B. Thoe, D.K. Aspinwall, N. Killey, Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy. J. Mater. Process. Technol, 92, 323–328 (1999)Google Scholar
  89. C. Treadwell, P. Hu, J.M. Zhang, Modeling of material removal rate in rotary ultrasonic machining: designed experiments. J. Mater. Process. Technol. 129(1–3), 339–344 (2002)Google Scholar
  90. G. Vikram, N.R. Babu, Modelling and analysis of abrasive water jet cut surface topography. Int. J. Mach. Tools Manuf. 42(12), 1345–1354 (2002)CrossRefGoogle Scholar
  91. Z.Y. Wang, K.P. Rajurkar, Dynamic analysis of ultrasonic machining process. In Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, Part I: 87–97 (1995)Google Scholar
  92. J. Wang, Abrasive waterjet machining of polymer matrix composites—cutting performance, erosive process and predictive models. Int. J. Adv. Manuf. Technol. 15(10), 757–768 (1999)CrossRefGoogle Scholar
  93. Z. Wansheng, W. Zhenlong, D. Shichun, C. Guanxin, W. Hongyu, Ultrasonic and electric discharge machining to deep and small hole on titanium alloy. J. Mater. Process. Technol, 120(1–3), 101–106 (2002)CrossRefGoogle Scholar
  94. E.J. Weller, Non-traditional machining processes. Society of Manufacturing Engineers, 15–71 (1984)Google Scholar
  95. G.W. Willard, Ultrasonically induced cavitation. J. Acoust. Soc. America 25, 669 (1953)CrossRefGoogle Scholar
  96. G. Ya, H.W. Quin, S.C. Yang, Analysis of rotary ultrasonic machining mechanism. J. Mater. Process. Technol. 129(1–3), 182–185 (2002)CrossRefGoogle Scholar
  97. K. Yanaida, A. Ohashi, Flow characteristics of water jets. In Second International Symposium on Jet Cutting Technology, A2, Cranfield, pp. 19–32 (1974)Google Scholar
  98. K. Yanaida, A. Ohashi, Flow characteristics of water jets in air. In Fifth International Symposium on Jet Cutting Technology, A3, Hannover, pp. 33–43 (1980)Google Scholar
  99. H.A. Youssef, H.A. El-Hofy, Machining technology: machine tools and operations. CRC Press (2008)Google Scholar
  100. W.M. Zeng, Z.C. Li, Z.J. Pei, C. Treadwell, Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. Int. J. Mach. Tools Manuf. 45, 1468–1473 (2005)CrossRefGoogle Scholar
  101. M. Zvoncan, M. Beno, M. Kovac, J. Peterka, Cross section of machined layer for rotary ultrasonic machining with a hollow drill. Manuf. Indus. Eng. 11(3), 11–13 (2012)Google Scholar
  102. Z.W. Zhong, Z.Z. Han, Turning of glass with abrasive waterjet. Mater. Manuf. Proc. 17(3), 339–349 (2002)CrossRefGoogle Scholar
  103. I. Zohourkari, M. Zohoor, Mathematical modeling of abrasive waterjet turning of ductile materials. In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis (American Society of Mechanical Engineers, 2010), pp. 825–830Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBirla Institute of TechnologyMesra,RanchiIndia
  2. 2.Department of Mechanical EngineeringNational Institute of TechnologySilcharIndia
  3. 3.Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations