Skip to main content

Path Planning for a Formation of Mobile Robots with Split and Merge

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2017)

Abstract

A novel multi-robot path planning approach is presented in this paper. Based on the standard Dijkstra, the algorithm looks for the optimal paths for a formation of robots, taking into account the possibility of split and merge. The algorithm explores a graph representation of the environment, computing for each node the cost of moving a number of robots and their corresponding paths. In every node where the formation can split, all the new possible formation subdivisions are taken into account accordingly to their individual costs. In the same way, in every node where the formation can merge, the algorithm verifies whether the combination is possible and, if possible, computes the new cost. In order to manage split and merge situations, a set of constrains is applied. The proposed algorithm is thus deterministic, complete and finds an optimal solution from a source node to all other nodes in the graph. The presented solution is general enough to be incorporated into high-level tasks as well as it can benefit from state-of-the-art formation motion planning approaches, which can be used for evaluation of edges of an input graph. The presented experimental results demonstrate ability of the method to find the optimal solution for a formation of robots in environments with various complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Álvarez, D., Gómez, J.V., Garrido, S., Moreno, L.: 3D robot formations path planning with fast marching square. J. Intell. Rob. Syst. 80(3–4), 507–523 (2015)

    Article  Google Scholar 

  2. Aronov, B., de Berg, M., van der Stappen, A.F., Švestka, P., Vleugels, J.: Motion planning for multiple robots. Discret. Comput. Geom. 22(4), 505–525 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, C., Duan, H., Li, C., Zhang, Y.: Dynamic multi-UAVs formation reconfiguration based on hybrid diversity-PSO and time optimal control. In: Intelligent Vehicles Symposium, IEEE, pp. 775–779, June 2009

    Google Scholar 

  4. Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  5. Barfoot, T., Clark, C.: Motion planning for formations of mobile robots. Robot. Auton. Syst. 46(2), 65–78 (2004)

    Article  Google Scholar 

  6. Chen, J., Sun, D., Yang, J., Chen, H.: A leader-follower formation control of multiple non-holonomic mobile robots incorporating receding- horizon scheme. Int. J. Robot. Res. 29(6), 727–747 (2009)

    Article  Google Scholar 

  7. Clark, C.M.: Probabilistic road map sampling strategies for multi-robot motion planning. Robot. Auton. Syst. 53(3–4), 244–264 (2005)

    Article  Google Scholar 

  8. Dasgupta, P., Cheng, K.: Robust multi-robot team formations using weighted voting games. In: Distributed Autonomous Robotic Systems, pp. 373–387. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32723-0_27

  9. Garrido, S., Moreno, L., Lima, P.U.: Robot formation motion planning using fast marching. Robot. Auton. Syst. 59(9), 675–683 (2011)

    Article  Google Scholar 

  10. Gómez, J.V., Lumbier, A., Garrido, S., Moreno, L.: Planning robot formations with fast marching square including uncertainty conditions. Robot. Auton. Syst. 61(2), 137–152 (2013)

    Article  Google Scholar 

  11. Kala, R.: Rapidly exploring random graphs: motion planning of multiple mobile robots. Adv. Robot. 27(14), 1113–1122 (2013)

    Article  Google Scholar 

  12. Lin, C.C., Chen, K.C., Chuang, W.J.: Motion planning using a memetic evolution algorithm for swarm robots. International Journal of Advanced Robotic Systems, p. 1, May 2012

    Google Scholar 

  13. Liu, S., Sun, D., Zhu, C.: Coordinated motion planning for multiple mobile robots along designed paths with formation requirement. IEEE/ASME Trans. Mechatron. 16(6), 1021–1031 (2011)

    Article  Google Scholar 

  14. Liu, Y., Bucknall, R.: Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Eng. 97, 126–144 (2015)

    Article  Google Scholar 

  15. Noormohammadi Asl, A., Menhaj, M.B., Sajedin, A.: Control of leader-follower formation and path planning of mobile robots using asexual reproduction optimization (aro). Appl. Soft Comput. 14, 563–576 (2014)

    Article  Google Scholar 

  16. Ogren, P.: Split and join of vehicle formations doing obstacle avoidance. In: Proceedings of IEEE International Conference on Robotics and Automation. ICRA 2004, vol. 2, pp. 1951–1955. IEEE (2004)

    Google Scholar 

  17. Olmi, R., Secchi, C., Fantuzzi, C.: Coordination of multiple AGVs in an industrial application. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1916–1921. IEEE (2008)

    Google Scholar 

  18. Pereira, G.A.S., Kumar, V., Campos, M.F.M.: Closed loop motion planning of cooperating mobile robots using graph connectivity. Robot. Auton. Syst. 56(4), 373–384 (2008)

    Article  Google Scholar 

  19. Qu, H., Xing, K., Alexander, T.: An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots. Neurocomputing 120, 509–517 (2013)

    Article  Google Scholar 

  20. Reynolds, C.W.: Steering behaviors for autonomous characters. Game dev. conf. 1999, 763–782 (1999)

    Google Scholar 

  21. Saska, M., Chudoba, J., Přeučil, L., Thomas, J., Loianno, G., Třešňák, A., Vonásek, V., Kumar, V.: Autonomous deployment of swarms of micro-aerial vehicles in cooperative surveillance. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 584–595, May 2014

    Google Scholar 

  22. Zhang, M., Shen, Y., Wang, Q., Wang, Y.: Dynamic artificial potential field based multi-robot formation control. In: IEEE Instrumentation and Measurement Technology Conference (I2MTC), pp. 1530–1534, May 2010

    Google Scholar 

  23. Zhong, X., Zhong, X., Peng, X.: Soft Computing. VCS-based motion planning for distributed mobile. Springer, Heidelberg (2015). https://doi.org/10.1007/s00500-015-1611-y

    Google Scholar 

Download references

Acknowledgment

The work of M. Estefanía Pereyra and R. Gastón Araguás has been supported by the “Multirrotores Autónomos para Aplicaciones en Ambientes Exteriores” project, U.T.N. PID UTI4534. The work of Miroslav Kulich has been supported by European Community’s HORIZON 2020 Programme under grant agreement No. 688117 “SafeLog: Safe human-robot interaction in logistic applications for highly flexible warehouses”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Estefanía Pereyra , Gastón Araguás or Miroslav Kulich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pereyra, E., Araguás, G., Kulich, M. (2018). Path Planning for a Formation of Mobile Robots with Split and Merge. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2017. Lecture Notes in Computer Science(), vol 10756. Springer, Cham. https://doi.org/10.1007/978-3-319-76072-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76072-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76071-1

  • Online ISBN: 978-3-319-76072-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics