Skip to main content

Measurement and Modelling of the Behavior of Military Pilots

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2017)

Abstract

A military pilot fulfilling his mission can often be caught in precarious situations and put under extreme strain. The aim of this article is to describe the current development of systems and methods for measuring and modelling military pilot’s behavior. The first part of this paper outlines the systems and methods for measuring and evaluation of physical and medical data needed to describe the condition and behavior of military pilots quantitatively. The second part focuses on an expert system approach to modelling military pilot behavior. The authors demonstrate, how the modules of the system were created and how measurements and tests were performed. The research findings outline the new expert system modelling military pilot’s behavior. Moreover, subsystems and sensors applied in the cockpit so that the system as a whole can support the pilot, are described. The complete system is able to determine the pilot’s stress load, along with physical and visual load levels. Based on this knowledge, it is possible to determine whether the pilot needs the support of the automatic flight control system. This system can be also be used in the flight control system and can increase battle effectiveness of the deployed aircrafts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morrison, J., Gluckman, J., Deaton, J.: Human performance in complex task environments: a basis for the application of adaptive automation. In: Proceedings of the Sixth International Symposium on Aviation Psychology, vol. 1, pp. 96–101. The Ohio State University, Columbus (1991)

    Google Scholar 

  2. Kacer J.: Modelling of the pilot behavior. In: Proceedings of the International Conference on Military Technologies (ICMT), pp. 477–480. University of Defense, Brno (2017)

    Google Scholar 

  3. Bajer, J., Bystricky, R., Jalovecky, R., Janu, P.: Aircraft sensors signal processing. In: Brezina, T., Jablonski, R. (eds.) Proceedings of the Recent Advances in Mechatronics, pp. 73–78. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-05022-0_13

  4. Socha, V., Schlenker, J., Kalavksy, P., Kutilek, P., Socha, L., Szabo, S., Smrcka, P.: Effect of the change of flight, navigation and motor data visualization on psychophysiological state of pilots. In: Proceedings of the IEEE 13th International Symposium on Applied Machine Intelligence and Informatics, pp. 339–344. Óbuda University, Budapest (2015)

    Google Scholar 

  5. Boril, J., Jirgl, M., Jalovecky, R.: Use of flight simulators in analyzing pilot behavior. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IFIP AICT, vol. 475, pp. 255–263. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44944-9_22

    Chapter  Google Scholar 

  6. Rerucha, V., Krupka, Z.; The pilot-aircraft intelligent interface concept. In: Proceedings of 5th International Conference on Application of Electrical Engineering, pp. 1204–1207. WSEAS, Athens (2006)

    Google Scholar 

  7. Boril, J., Zaplatilek, K., Jalovecky, R.: Analog filter realization for human - machine interaction in aerospace. In: Proceedings of IEEE International Conference on the Science of Electrical Engineering, pp. 1–5, IEEE, Piscataway (2017)

    Google Scholar 

  8. Dehais, F., Causse, M., Pastor, J.: Toward the definition of a pilot’s physiological state vector through oculometry: a preliminary study in real flight conditions. In: Proceedings of HCI AERO Conference, pp. 1–8 (2010)

    Google Scholar 

  9. Mumaw, R., Sarter, N., Wickens, C.: Analysis of pilots’ monitoring and performance on an automated flight deck. In: Proceedings of the 11th Biennial Meeting of the International Symposium on Aviation Psychology, pp. 1–7. The Ohio State University, Columbus (2001)

    Google Scholar 

  10. Jirgl, M., Boril, J., Jalovecky, R.: The identification possibilities of the measured parameters of an aircraft model and pilot behavior model on the flight simulator. In: Proceedings of International Conference on Military Technologies, pp. 1–5. University of Defense, Brno (2015)

    Google Scholar 

  11. Socha, V., Kutilek, P., Stefek, A., Socha, L., Schlenker, J., Hana, K., Szabo, S.: Evaluation of relationship between the activity of upper limb and the piloting precision. In: Proceedings of the 16th International Conference on Mechatronics, pp. 405–410. University of Technology, Brno (2014)

    Google Scholar 

  12. Boril, J., Jalovecky, R.: Experimental identification of pilot response using measured data from a flight simulator. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2012. IFIP AICT, vol. 381, pp. 126–135. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33409-2_14

    Chapter  Google Scholar 

  13. Dehais, F., Tessier, C., Chaudron, L.: GHOST: experimenting conflicts countermeasures in the pilot’s activity. In: Proccedings of the 18th International Joint Conference on Artificial Intelligence, pp. 163–168 (2003)

    Google Scholar 

  14. Jalovecky, R.: Man in the aircraft flight control system. Adv. Mil. Technol. 4(1), 149–157 (2009)

    Google Scholar 

  15. Dehais F., Lesire C., Goudou A., Tessier C.: Toward an anticipatory agent to help pilots. In: Proccedings of the AAAI Fall Symposium “From reactive to anticipatory cognitive embodied systems”, pp. 1–6 (2005)

    Google Scholar 

  16. Allerton, D.: Principles of Flight Simulation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  17. Stott, J.R.: Orientation and disorientation in aviation. Extrem. Physiol. Med. 2(2), 1–11 (2013)

    Google Scholar 

  18. Rolston, D., Rayhawk, S., Earnest, B.: Advanced fighter controls flight simulator for all-systems compatibility testing. J. Aircraft 10(10), 602–609 (1973)

    Article  Google Scholar 

  19. Ojha, S. K.: Aerobatic maneuvers and flight boundaries. In: Flight Performance of Aircraft. AIAA Education Series, pp. 403–418. American Institute of Aeronautics and Astronautics, Reston (1995)

    Google Scholar 

  20. Durham, W.: Control stick logic in high-angle-of-attack maneuvering. J. Guid. Control Dyn. 18(5), 1092–1097 (1995)

    Article  Google Scholar 

  21. Regula, M., Socha, V., Kutilek, P., Socha, L., Hana, K., Hanakova, L., Szabo, S.; Study of heart rate as the main stress indicator in aircraft pilots. In: Proceedings of the 16th International Conference on Mechatronics, pp. 639–643. University of Technology, Brno (2014)

    Google Scholar 

  22. Granholm, E., Steinhauer, S.: Pupillometric measures of cognitive and emotional processes. Int. J. Psychophysiol. 52(1), 1–6 (2004)

    Article  Google Scholar 

  23. Critchley, H.: Electrodermal responses: what happens in the brain? Neuroscientist 8(2), 132–142 (2002)

    Article  Google Scholar 

  24. Skinner, M., Simpson, P.: Workload issues in military tactical aircraft. Int. J. Aviat. Psychol. 12(1), 79–93 (2002)

    Article  Google Scholar 

  25. Veltman, J., Gaillard, A.: Physiological indices of workload in a simulated flight task. Biol. Psychol. 42(3), 323–342 (1996)

    Article  Google Scholar 

  26. Kasarskis, P., Stehwien, J., Hichox, J., Aretz, A., Wickens, C.: Comparison of expert and novice scan behaviors during VFR flight. In: Proceedings of the 11th International Symposium on Aviation Psychology, pp. 1–6. The Ohio State University, Columbus (2001)

    Google Scholar 

  27. Veltman, J., Comparative, A.: Study of psychophysiological reactions during simulator and real flight. Int. J. Aviat. Psychol. 12(1), 33–48 (2002)

    Article  Google Scholar 

  28. Yao, Y.-J., Chang, Y.-M., Xie, X.-P., Cao, X.-S., Sun, X.-Q., Yan-Hong, W.: Heart rate and respiration responses to real traffic pattern flight. Appl. Psychophysiol. Biofeedback 33(4), 203–209 (2008)

    Article  Google Scholar 

  29. Wilson, G.: A Comparison of three cardiac ambulatory recorders using flight data. Int. J. Aviat. Psychol. 12(1), 111–119 (2009)

    Article  MathSciNet  Google Scholar 

  30. Singh, M., Reddy, B., Knshnamurti, S., Verma, S.: Aerobiotelemetry from a fighter aircraft. Ind. J. Aerospace Med: Spec. Commemorat. Vol., 1–22 (2007)

    Google Scholar 

  31. Hankins, T., Wilson, G.: A comparison of heart rate, eye activity, EEG and subjective measures of pilot mental workload during flight. Aviat. Space Environ. Med. 69(69), 360–367 (1998)

    Google Scholar 

  32. Wilson, G.F., Fullenkamp, P., Davis, I.: Evoked potential, cardiac, blink, and respiration measures of pilot workload in airto-ground missions. Aviat. Space Environ. Med. 65(2), 100–105 (1994)

    Google Scholar 

  33. Sharma, S., Baijal, R., Sinha, A.: Mental work load assessment during different simulated instrument meteorological conditions, in clouds and during dark night. Ind. J. Aerospace Med. 56(1), 12–20 (2012)

    Google Scholar 

  34. Falaschi, P., Proietti, A., De Angelis, C., Martocchia, A., Giarrizzo, C., Biselli, R., D’Urso, R., D’Amelio, R.: Effects of mental stress on cardiovascular and endocrine response in Air Force Academy cadets. Neuro Endocrinol. Lett. 24(3–4), 197–202 (2003)

    Google Scholar 

  35. Nesthus, T., Rush, L., Wreggit, S.: Effects of mild hypoxia on pilot performances at general aviation altitudes, Report No: DOT/FAA/AM-97/9. Federal Aviation Administration. Civilian Aeroedical Institute, Oklahoma City (1992)

    Google Scholar 

  36. Temme, L., Still, D., Acromite, M.: Hypoxia and flight performance of military instructor pilots in a flight simulator. Aviat. Space Environ. Med. 81(7), 654–659 (2010)

    Article  Google Scholar 

  37. O’Brien, P.: Eyeblink monitoring as a means of measuring pilot physiological state. In: Proceedings of the IEEE National Aerospace and Electronics Conference, pp. 890–892 (1988)

    Google Scholar 

  38. Ang, B., Linder, J., Harms-Ringdahl, K.: Neck strength and myoelectric fatigue in fighter and helicopter pilots with a history of neck pain. Aviat. Space Environ. Med. 76(4), 375–380 (2005)

    Google Scholar 

  39. Murray, M., Lange, B., Chreiteh, S., Olsen, H., Nornberg, B., Boyle, E., Sogaard, K., Sjogaard, G.: Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight. J. Electromyogr. Kinesiol. 27, 10–17 (2016)

    Article  Google Scholar 

  40. Dor, A., Pokroy, R.: Goldstein, L,: Barenboim, E., Zilberberg, M.: Heat stress and carbon monoxide exposure during C-130 vehicle transportation. Aviat. Space Environ. Med. 76(4), 399–402 (2005)

    Google Scholar 

  41. Nunneley, S., Flick, C.: Heat stress in the A-10 cockpit: flights over desert. Aviat. Space Environ. Med. 52(9), 513–516 (1981)

    Google Scholar 

  42. Glenn, F.: An analysis of mental workload in pilots during flight using multiple, psychophysiological measures. Int. J. Aviat. Psychol. 12(1), 3–18 (2009)

    Google Scholar 

  43. Flight Safety Foundation Staff: Dehydration presents unique risks for pilots. Human Factors Aviat. Med. 48(4), 1–5 (2001)

    Google Scholar 

  44. Sive, W., Hattingh, J.: The measurement of psychophysiological reactions of pilots to a stressor in a flight simulator. Aviat. Space Environ. Med. 62(9), 831–836 (1991)

    Google Scholar 

  45. Kakimoto, Y., Nakamura, A., Tarui, H., Nagasawa, Y., Yagura, S.: Crew workload in JASDF C-1 transport flights: 1. Change in heart rate and salivary cortisol. Aviat. Space Environ. Med. 59(6), 511–516 (1988)

    Google Scholar 

  46. Leino, T., Leppaluoto, J., Huttunen, P., Ruokonen, A., Kuronen, P.: Neuroendocrine responses to real and simulated BA Hawk MK 51 flight. Aviat. Space Environ. Med. 66(2), 108–113 (1995)

    Google Scholar 

  47. McRuer, D., Krendel, E.: Mathematical Models of Human Pilot Behavior. NTIS, Springfield (1974)

    MATH  Google Scholar 

  48. McRuer, D., Krendel, E.: Human pilot dynamics in compensatory systems. Air Force Flight Dynamics Laboratory, Research and Technology Division (1965)

    Google Scholar 

  49. Jalovecky, R., Andrle, M., Boril, J.: Advanced models of human behaviour in aircraft flight control. In: Proceedings of the International conference on Transport Means, pp. 235–238. Kaunas University of Technology, Klaipeda (2014)

    Google Scholar 

  50. Boril, J., Jalovecky, R.: Mathematical analysis of human factors using experimental parameter identification of human behaviour model. Eng. Intell. Syst. 21(2–3), 89–99 (2013)

    Google Scholar 

  51. Jirgl, M., Jalovecky, R., Bradac, Z.: Models of pilot behavior and their use to evaluate the state of pilot training. J. Electr. Eng. 67(4), 267–272 (2016)

    Google Scholar 

  52. Jirgl, M., Havlikova, M., Bradac, Z.: The dynamic pilot behavioral models. Ann. DAAAM Proc. 25(1), 1192–1197 (2014)

    Google Scholar 

  53. Pool, D., Pais, R., De Vroome, A., Van Paassen, M., Mulder, M.: Identification of nonlinear motion perception dynamics using time-domain pilot modeling. J. Guid. Control Dyn. 35(3), 749–763 (2012)

    Article  Google Scholar 

  54. Hess, R.: A model for pilot control behavior in analyzing potential loss-of-control events. Proc. IMechE Part G: J. Aerospace Eng. 228(10), 1845–1856 (2014)

    Google Scholar 

  55. Hess, R.: Modeling human pilot adaptation to flight control anomalies and changing task demands. J. Guid. Control Dyn. 39(3), 655–666 (2016)

    Article  Google Scholar 

  56. Zaal, P.: Manual control adaptation to changing vehicle dynamics in roll–pitch control tasks. J. Guid. Control Dyn. 39(5), 1046–1058 (2016)

    Article  Google Scholar 

  57. Hess, R.: Modeling the pilot detection of time-varying aircraft dynamics. J. Aircraft 49(6), 2100–2104 (2012)

    Article  Google Scholar 

  58. Tan, W., Wu, Y., Qu, X., Efremov, A.V.: A method for predicting aircraft flying dualities using neural networks pilot model. In: Proceedings of the 2nd International Conference on Systems and Informatics, pp. 258–263, Shanghai Dianji University, Shanghai (2014)

    Google Scholar 

  59. Zhang, G., Chen, D., Feng, Y.: Evaluation of airline pilots’ safety behaviors based on fuzzy neural network. In: Proceedings of the 5th International Conference on Intelligent Human-Machine Systems and Cybernetics, pp. 429–432. IEEE, Washington (2013)

    Google Scholar 

  60. Rasmussen, J.: Information Processing and Human-Machine Interaction: An Approach to Cognitive Engineering. Elsevier, Amsterdam (1986)

    Google Scholar 

  61. Efremov, A., Tjaglik, M., Tiumentzev, U., Wenqian, T.: Pilot behavior modeling and its application to manual control tasks. IFAC-PapersOnLine 49(32), 159–164 (2016)

    Article  Google Scholar 

  62. Farlik, J.: Conceptual operational architecture of the air force simulator: simulation of Air Defense Operations. In: Proceedings of the International Conference on Military Technologies (ICMT), pp. 675–679. University of Defense, Brno (2017)

    Google Scholar 

  63. Farlik, J., Stary, V., Casar, J.: Simplification of missile effective coverage zone in air defence simulations. In: Proceedings of the International Conference on Military Technologies (ICMT), pp. 733–737. University of Defense, Brno (2017)

    Google Scholar 

Download references

Acknowledgements

This study was undertaken within the framework of the research project SGS16/109/OHK4/1T/17 sponsored by the Czech Technical University in Prague. The work presented in this article has also been supported by the Czech Republic Ministry of Defence (University of Defence, development program “Research of sensor and control systems to achieve battlefield information superiority”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Kutilek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kacer, J., Kutilek, P., Krivanek, V., Doskocil, R., Smrcka, P., Krupka, Z. (2018). Measurement and Modelling of the Behavior of Military Pilots. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2017. Lecture Notes in Computer Science(), vol 10756. Springer, Cham. https://doi.org/10.1007/978-3-319-76072-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76072-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76071-1

  • Online ISBN: 978-3-319-76072-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics