Skip to main content

Modelling of a Group of Social Agents Monitored by UAVs

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2017)

Abstract

Robotics cooperation in service environments, i.e. environments shared with other non-robotic agents, is becoming more and more popular in industrial, agriculture, environmental monitoring and social applications. In this paper we propose a team of Unmanned Aerial Vehicles that has to control the trajectories of a group of agents having an internal behavioural logic, such as a group of human beings moving in a shared environment or an animal flocking. The controlling UAVs are assumed to generate a force on the group members, modelled as a repulsive force and representing some sort of “fear” of the flying robot. To this end, this paper proposes both an effective model for the group of agents, which is inspired by the Social Force Model, and a distributed estimation and control algorithm for the controlling UAVs. By means of simulations, the validity of the modelling and the control parts is shown and promising results are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreetto, M., Pacher, M., Fontanelli, D., Macii, D.: A cooperative monitoring technique using visually servoed drones. In: Proceedings of IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS), pp. 244–249. IEEE, Trento, July 2015

    Google Scholar 

  2. Arechavaleta, G., Laumond, J.P., Hicheur, H., Berthoz, A.: On the nonholonomic nature of human locomotion. Auton. Robots 25(1–2), 25–35 (2008)

    Article  Google Scholar 

  3. De Gennaro, M.C., Jadbabaie, A.: Formation control for a cooperative multi-agent system using decentralized navigation functions. In: American Control Conference, 6-pp. IEEE (2006)

    Google Scholar 

  4. De Smedt, F., Hulens, D., Goedemé, T.: On-board real-time tracking of pedestrians on a UAV. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2015)

    Google Scholar 

  5. Farina, F., Fontanelli, D., Garulli, A., Giannitrapani, A., Prattichizzo, D.: When Helbing meets Laumond: the headed social force model. In: Proceedings of IEEE International Conference on Decision and Control (CDC), pp. 3548–3553. IEEE, Las Vegas, December 2016

    Google Scholar 

  6. Farina, F., Fontanelli, D., Garulli, A., Giannitrapani, A., Prattichizzo, D.: Walking ahead: the headed social force model. PLoS ONE 12(1), 1–23 (2017)

    Article  Google Scholar 

  7. Garrell, A., Sanfeliu, A.: Local optimization of cooperative robot movements for guiding and regrouping people in a guiding mission. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3294–3299, October 2010

    Google Scholar 

  8. Garrell, A., Sanfeliu, A.: Cooperative social robots to accompany groups of people. Int. J. Robot. Res. 31(13), 1675–1701 (2012)

    Article  Google Scholar 

  9. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  10. Johansson, F., Peterson, A., Tapani, A.: Waiting pedestrians in the social force model. Phys. A Stat. Mech. Appl. 419, 95–107 (2015)

    Article  Google Scholar 

  11. Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1333–1364 (2003)

    Article  Google Scholar 

  12. Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1255–1321 (2005)

    Article  Google Scholar 

  13. Lien, J.M., Bayazit, O.B., Sowell, R.T., Rodriguez, S., Amato, N.M.: Shepherding behaviors. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 4, pp. 4159–4164, April 2004

    Google Scholar 

  14. Lien, J.M., Rodriguez, S., Malric, J., Amato, N.M.: Shepherding behaviors with multiple shepherds. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 3402–3407, April 2005

    Google Scholar 

  15. Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles. IEEE Robot. Autom. Mag. 19, 20–32 (2012)

    Article  Google Scholar 

  16. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10047 (2010)

    Article  Google Scholar 

  17. Olfati-Saber, R.: Distributed Kalman filtering for sensor networks. In: 2007 46th IEEE Conference on Decision and Control, pp. 5492–5498. IEEE (2007)

    Google Scholar 

  18. Palopoli, L., Argyros, A., Birchbauer, J., Colombo, A., Fontanelli, D., Legay, A., Garulli, A., Giannitrapani, A., Macii, D., Moro, F., Nazemzadeh, P., Padeleris, P., Passerone, R., Poier, G., Prattichizzo, D., Rizano, T., Rizzon, L., Scheggi, S., Sedwards, S.: Navigation assistance and guidance of older adults across complex public spaces: the DALi approach. Intell. Serv. Robot. 8(2), 77–92 (2015)

    Article  Google Scholar 

  19. Singer, R.A.: Estimating optimal tracking filter performance for manned maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 4, 473–483 (1970)

    Article  Google Scholar 

  20. Vaughan, R., Sumpter, N., Henderson, J., Frost, A., Cameron, S.: Robot control of animal flocks. In: Proceedings of IEEE International Symposium on Intelligent Control (ISIC), pp. 277–282, September 1998

    Google Scholar 

  21. Vaughan, R., Sumpter, N., Henderson, J., Frost, A., Cameron, S.: Experiments in automatic flock control. Robot. Auton. Syst. 31(1), 109–117 (2000)

    Article  Google Scholar 

  22. Vo, C., Harrison, J.F., Lien, J.M.: Behavior-based motion planning for group control. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3768–3773, October 2009

    Google Scholar 

  23. Zeng, W., Chen, P., Nakamura, H., Iryo-Asano, M.: Application of social force model to pedestrian behavior analysis at signalized crosswalk. Transp. Res. Part C Emerg. Technol. 40, 143–159 (2014)

    Article  Google Scholar 

  24. Zhu, X., Liu, Z., Yang, J.: Model of collaborative UAV swarm toward coordination and control mechanisms study. Procedia Comput. Sci. 51, 493–502 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Fontanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morelli, F., Vignotto, D., Fontanelli, D. (2018). Modelling of a Group of Social Agents Monitored by UAVs. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2017. Lecture Notes in Computer Science(), vol 10756. Springer, Cham. https://doi.org/10.1007/978-3-319-76072-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76072-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76071-1

  • Online ISBN: 978-3-319-76072-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics