Skip to main content

An Exact Optimal Kinodynamic Planner Based on Homotopy Class Constraints

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10756))

Abstract

This paper proposes a kinodynamic planning algorithm for vehicles with bounds on actuation. The proposed approach is based on identification of homotopy classes to decompose the global obstacle avoidance problem into several simpler subproblems. We formulate the homotopic trajectory planning problem in a multiple phase trajectory optimization scheme, such that at each phase different kinematic constraints are active. This novel formulation satisfies the collision-free constraints and homotopy constraints at the same time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bhattacharya, S., Likhachev, M., Kumar, V.: Topological constraints in search-based robot path planning. Auton. Robots 33(3), 273–290 (2012)

    Article  Google Scholar 

  2. Chazelle, B.: Approximation and decomposition of shapes. Algorithmic Geom. Aspects Robot. 1, 145–185 (1985)

    Google Scholar 

  3. Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion planning. J. ACM (JACM) 40(5), 1048–1066 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gu, T., Dolan, J.M., Lee, J.W.: Automated tactical maneuver discovery, reasoning and trajectory planning for autonomous driving. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5474–5480. IEEE (2016)

    Google Scholar 

  5. Hernandez, E., Carreras, M., Ridao, P.: A comparison of homotopic path planning algorithms for robotic applications. Robot. Auton. Syst. 64, 44–58 (2015)

    Article  Google Scholar 

  6. Jeon, J.H., Karaman, S., Frazzoli, E.: Anytime computation of time-optimal off-road vehicle maneuvers using the RRT*. In: Decision and Control and European Control Conference (CDC-ECC) (2011)

    Google Scholar 

  7. Kuderer, M., Sprunk, C., Kretzschmar, H., Burgard, W.: Online generation of homotopically distinct navigation paths. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2014)

    Google Scholar 

  8. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  9. Likhachev, M., Ferguson, D.: Planning long dynamically feasible maneuvers for autonomous vehicles. Int. J. Robot. Res. 28(8), 933–945 (2009)

    Article  Google Scholar 

  10. Park, J., Karumanchi, S., Iagnemma, K.: Homotopy-based divide-and-conquer strategy for optimal trajectory planning via mixed-integer programming. IEEE Trans. Robot. 31(5), 1101–1115 (2015)

    Article  Google Scholar 

  11. Patterson, M.A., Rao, A.V.: GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. (TOMS) 41, Article No. 1 (2014)

    Google Scholar 

  12. Pearl, J.: Heuristics: intelligent search strategies for computer problem solving (1984)

    Google Scholar 

  13. Perez, A., Platt, Jr. R., Konidaris, G., Kaelbling, L., Lozano-Perez, T.: LQR-RRT*: optimal sampling-based motion planning with automatically derived extension heuristics. In: Robotics and Automation (ICRA) (2012)

    Google Scholar 

  14. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. J. Field Robot. 26(3), 308–333 (2009)

    Article  Google Scholar 

  15. Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: CHOMP: gradient optimization techniques for efficient motion planning. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 489–494. IEEE (2009)

    Google Scholar 

  16. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Inaba, M., Corke, P. (eds.) Robotics Research. STAR, vol. 114, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28872-7_37

    Chapter  Google Scholar 

  17. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Webb, D.J., van den Berg, J.: Kinodynamic RRT*: optimal motion planning for systems with linear differential constraints. arXiv preprint arXiv:1205.5088 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basak Sakcak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakcak, B., Bascetta, L., Ferretti, G. (2018). An Exact Optimal Kinodynamic Planner Based on Homotopy Class Constraints. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2017. Lecture Notes in Computer Science(), vol 10756. Springer, Cham. https://doi.org/10.1007/978-3-319-76072-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76072-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76071-1

  • Online ISBN: 978-3-319-76072-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics