Skip to main content

The Neuroscience of Creative Idea Generation

  • Chapter
  • First Online:
Exploring Transdisciplinarity in Art and Sciences

Abstract

Creative idea generation is the source of amazing novel insights and original products, which enrich everyday life and represent valuable contributions to arts and sciences. But how does the brain produce creative ideas? This question has been addressed in cognitive neuroscience research by measuring the brain activation during creative idea generation using different techniques such as EEG and MRI. This chapter introduces some of the key findings in this field: What is the functional role of alpha activity during creative thought? What brain activation is associated with the generation of novel ideas? How do large-scale brain networks interact during creative performance? These findings are integrated into a neurocognitive process model (RISE), which proposes that retrieval, integration/simulation and evaluation represent central, distinguishable neurocognitive processes underlying creative idea generation.

In Kapoula, Z., Renoult, J., Volle, E., & Andreatta, M. (Eds.), Exploring Transdisciplinarity in Art and Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in Human Neuroscience, 7, 246.

    Google Scholar 

  • Abraham, A. (2016). The imaginative mind. Human Brain Mapping, 37(11), 4197–4211.

    Google Scholar 

  • Abraham, A., Pieritz, K., Thybush, K., Rutter, B., Kröger, S., Schweckendiek, J., et al. (2012). Creativity and the brain: uncovering the neural signature of conceptual expansion. Neuropsychologia, 50, 1906–1917.

    Google Scholar 

  • Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Annuals of the New York Academy of Sciences, 1316, 29–52.

    Google Scholar 

  • Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric review. Behavioral Brain Research, 214, 143–156.

    Google Scholar 

  • Aziz-Zadeh, L., Liew, S. L., & Dandekar, F. (2013). Exploring the neural correlates of visual creativity. Social Cognitive and Affective Neuroscience, 8, 475–480.

    Google Scholar 

  • Badre, D., Poldrack, R. A., Paré-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47, 907–918.

    Google Scholar 

  • Beaty, R. E. (2015). The neuroscience of musical improvisation. Neuroscience and Biobehavioral Reviews, 51, 108–117.

    Google Scholar 

  • Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.

    Google Scholar 

  • Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 87–95.

    Google Scholar 

  • Bendetowicz, D., Urbanski, M., Aichelburg, C., Levy, R., & Volle, E. (2017). Brain morphometry predicts individual creative potential and the ability to combine remote ideas. Cortex, 86, 216–229. https://doi.org/10.1016/j.cortex.2016.10.021.

    Article  Google Scholar 

  • Benedek, M. (2018). Internally directed attention in creative cognition. In R.E. Jung & O. Vartanian (eds.), The Cambridge handbook of the neuroscience of creativity (pp. 180–194). New York: Cambridge University Press.

    Google Scholar 

  • Benedek, M., Beaty, R., Jauk, E., Koschutnig, K., Fink, A., Silvia, P. J., et al. (2014a). Creating metaphors: The neural basis of figurative language production. NeuroImage, 90, 99–106.

    Google Scholar 

  • Benedek, M., Bergner, S., Könen, T., Fink, A., & Neubauer, A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia, 49, 3505–3511.

    Google Scholar 

  • Benedek, M., Fink, A., & Neubauer, A. C. (2006). Enhancement of ideational fluency by means of computer-based training. Creativity Research Journal, 18, 317–328.

    Google Scholar 

  • Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273–281.

    Google Scholar 

  • Benedek, M., Jauk, E., Beaty, R. E., Fink, A., Koschutnig, K., & Neubauer, A. C. (2016). Brain mechanisms associated with internally directed attention and self-generated thought. Scientific Reports, 6, 22959.

    Google Scholar 

  • Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., et al. (2014b). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125–133.

    Google Scholar 

  • Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014c). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 73–83.

    Google Scholar 

  • Benedek, M., Mühlmann, C., Jauk, E., & Neubauer, A. C. (2013). Assessment of divergent thinking by means of the subjective top-scoring method: Effects of the number of top-ideas and time-on-task on reliability and validity. Psychology of Aesthetics, Creativity, and the Arts, 7, 341–349.

    Google Scholar 

  • Benedek, M., Schickel, R. J., Jauk, E., Fink, A., & Neubauer, A. C. (2014d). Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia, 56, 393–400.

    Google Scholar 

  • Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527–536.

    Google Scholar 

  • Bookheimer, S. (2002). Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–188.

    Google Scholar 

  • Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences, 14, 277–290.

    Google Scholar 

  • Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.

    Google Scholar 

  • Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008). The parietal cortex and episodic memory: an attentional account. Nature Review Neuroscience, 9, 613–625.

    Google Scholar 

  • Campbell, D. T. (1960). Blind variation and selective retentions in creative thought as in other knowledge processes. Psychological Review, 67, 380.

    Google Scholar 

  • Chrysikou, E. G., & Thompson-Schill, S. L. (2011). Dissociable brain states linked to common and creative object use. Human Brain Mapping, 32, 665–675.

    Google Scholar 

  • Cooper, N. R., Croft, R. J., Dominey, S. J. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology, 47, 65–74.

    Google Scholar 

  • Cropley, A. (2006). In praise of convergent thinking. Creativity Research Journal, 18, 391–404.

    Google Scholar 

  • Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition, 12, 231–256.

    Google Scholar 

  • Diedrich, J., Benedek, M., Jauk, E., & Neubauer, A. C. (2015). Are creative ideas novel and useful? Psychology of Aesthetics, Creativity and the Arts, 9, 35–40.

    Google Scholar 

  • Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822–848.

    Google Scholar 

  • Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. Neuroimage, 59, 1783–1794.

    Google Scholar 

  • Fink, A., & Benedek, M. (2013). The creative brain: Brain correlates underlying the generation of original ideas. In O. Vartanian, A. S. Bristol, & J. C. Kaufman (Eds.), Neuroscience of creativity (pp. 207–232). Cambridge, MA: MIT Press.

    Google Scholar 

  • Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111–123.

    Google Scholar 

  • Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42, 68–76.

    Google Scholar 

  • Fink, A., Benedek, M., Koschutnig, K., Pirker, E., Berger, E., Meister, S., et al. (2015). Training of verbal creativity modulates brain activity in regions associated with language- and memory-related demands. Human Brain Mapping, 36, 4104–4115.

    Google Scholar 

  • Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23, 2241–2246.

    Google Scholar 

  • Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., et al. (2009a). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734–748.

    Google Scholar 

  • Fink, A., Graif, B., & Neubauer, A. C. (2009b). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. NeuroImage, 46, 854–862.

    Google Scholar 

  • Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: Evidence from an fMRI study. NeuroImage, 52, 1687–1695.

    Google Scholar 

  • Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., et al. (2014a). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function, 219, 1263–1269.

    Google Scholar 

  • Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62, 46–53.

    Google Scholar 

  • Fink, A., Weber, B., Koschutnig, K., Benedek, M., Reishofer, G., Ebner, F., et al. (2014b). Creativity and schizotypy from the neuroscience perspective. Cognitive, Affective, & Behavioral Neuroscience, 14, 378–387.

    Google Scholar 

  • Fink, A., Schwab, D., & Papousek, I. (2011). Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. International Journal of Psychophysiology, 82, 233–239.

    Google Scholar 

  • Finke, R. A. (1996). Imagery, creativity, and emergent structure. Consciousness and Cognition, 5, 381–393.

    Google Scholar 

  • Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611–621.

    Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678.

    Google Scholar 

  • Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611–625.

    Google Scholar 

  • Glucksberg, S. (2001). Understanding figurative language: from metaphors to idioms. New York: Oxford University Press.

    Google Scholar 

  • Glucksberg, S. (2003). The psycholinguistics of metaphor. Trends in Cognitive Science, 7, 92–96.

    Google Scholar 

  • Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.

    Google Scholar 

  • Grabner, R. H., Fink, A., & Neubauer, A. C. (2007). Brain correlates of self-rated originality of ideas: Evidence from event-related power and phase-locking changes in the EEG. Behavioral Neuroscience, 121, 224–230.

    Google Scholar 

  • Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.

    Google Scholar 

  • Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.

    Google Scholar 

  • Howard-Jones, P. A., Blakemore, S. J., Samuel, E. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Cognitive Brain Research, 25, 240–250.

    Google Scholar 

  • Jaarsveld, S., Fink, A., Rinner, M., Schwab, D., Benedek, M., & Lachmann, T. (2015). Intelligence in creative processes: An EEG study. Intelligence, 49, 171–178.

    Google Scholar 

  • Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84, 219–225.

    Google Scholar 

  • Jauk, E., Benedek, M., & Neubauer, A. C. (2014). The road to creative achievement: A latent variable model of ability and personality predictors. European Journal of Personality, 28, 95–105.

    Google Scholar 

  • Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2015). Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. NeuroImage, 111, 312–320.

    Google Scholar 

  • Jaušovec, N. (1997). Differences in EEG activity during the solution of closed and open problems. Creative Research Journal, 10, 317–324.

    Google Scholar 

  • Jaušovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: an EEG study. Intelligence, 28, 213–237.

    Google Scholar 

  • Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16, 200–206.

    Google Scholar 

  • Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12, 877–882.

    Google Scholar 

  • Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: disentangling constructs with diffusion tensor imaging. PLoS ONE, 5, 9818.

    Google Scholar 

  • Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135–154.

    Google Scholar 

  • Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330.

    Google Scholar 

  • Kaufman, J. C., Plucker, J. A., & Baer, J. (2008). Essentials of creativity assessment. Hoboken, NJ: Wiley.

    Google Scholar 

  • Kleibeuker, S., Koolschijn, P. C., Jolles, D., De Dreu, C., & Crone, E. A. (2013). The neural coding of creative idea generation across adolescence and early adulthood. Frontiers in Human Neuroscience, 7, 905.

    Google Scholar 

  • Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16, 606–617.

    Google Scholar 

  • Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., & Winkler, T. (1999). “Paradoxical” alpha synchronization in a memory task. Cognitive Brain Research, 7, 493–501.

    Google Scholar 

  • Koestler, A. (1964). The act of creation. New York, NY: Macmillan.

    Google Scholar 

  • Kröger, S., Rutter, B., Stark, R., Windmann, S., Hermann, C., & Abraham, A. (2012). Using a shoe as a plant pot: neural correlates of passive conceptual expansion. Brain Research, 1430, 52–61.

    Google Scholar 

  • Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., et al. (2015). Brain activity and connectivity during poetry composition: Toward a multidimensional model of the creative process. Human Brain Mapping, 36, 3351–3372.

    Google Scholar 

  • Lubart, T., Zensani, F., & Barbot, B. (2013). Creative potential and its measurement. International Journal for Talent Development and Creativity, 1, 41–51.

    Google Scholar 

  • Martindale, C. (1999). Biological bases of creativity. In R. Sternberg (Ed.), Handbook of creativity (pp. 137–152). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Martindale, C., & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological Psychology, 6, 157–167.

    Google Scholar 

  • Martindale, C., & Hines, D. (1975). Creativity and cortical activation during creative, intellectual, and EEG feedback tasks. Biological Psychology, 3, 71–80.

    Google Scholar 

  • Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220–232.

    Google Scholar 

  • Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance. Journal of Personality, 44, 341–369.

    Google Scholar 

  • Palva, S., & Palva, J. M. (2007). New vistas for α-frequency band oscillations. Trends in Neurosciences, 30, 150–158.

    Google Scholar 

  • Pfurtscheller, G., Stancák Jr, & Neuper, A. C. (1996). Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review. International Journal of Psychophysiology, 24, 39–46.

    Google Scholar 

  • Pinho, A. L., et al. (2016). Addressing a paradox: Dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26, 3052–3063.

    Google Scholar 

  • Plucker, J. A. (1999). Is the proof in the pudding? Reanalyses of Torrance’s (1958 to present) longitudinal data. Creativity Research Journal, 12(103), 114.

    Google Scholar 

  • Rapp, A. M., Mutschler, D. E., & Erb, M. (2012). Where in the brain is nonliteral language? A coordinate-based meta-analysis of functional magnetic resonance imaging studies. Neuroimage, 63, 600–610.

    Google Scholar 

  • Ray, W. J., & Cole, H. W. (1985). EEG alpha reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science, 228, 750–752.

    Google Scholar 

  • Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 92–96.

    Google Scholar 

  • Robinson, G., Blair, J., & Cipolotti, L. (1998). Dynamic aphasia: an inability to select between competing verbal responses? Brain, 121, 77–89.

    Google Scholar 

  • Ryman, S. G., van den Heuvel, M. P., Yeo, R. A., Caprihan, A., Carrasco, J., Vakhtin, A. A., et al. (2014). Sex differences in the relationship between white matter connectivity and creativity. NeuroImage, 101, 380–389.

    Google Scholar 

  • Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Human Brain Mapping, 26, 148–155.

    Google Scholar 

  • Sawyer, K. (2011). The cognitive neuroscience of creativity: a critical review. Creativity Research Journal, 23, 137–154.

    Google Scholar 

  • Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657–661.

    Google Scholar 

  • Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677–694.

    Google Scholar 

  • Schwab, D., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). The time-course of EEG alpha power changes in creative ideation. Frontiers in Human Neuroscience, 8, 310.

    Google Scholar 

  • Simonton, D. K. (2011). Creativity and discovery as blind variation: Campbell’s (1960) BVSR model after the half-century mark. Review of General Psychology, 15, 158–174.

    Google Scholar 

  • Shah, C., Erhard, K., Ortheil, H. J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: an fMRI study. Human Brain Mapping, 34, 1088–1101.

    Google Scholar 

  • Silvia, P. J. (2015). Intelligence and creativity are pretty similar after all. Educational Psychology Review, 27, 599–606.

    Google Scholar 

  • Silvia, P. J., Winterstein, B. B., Willse, J. T., Barona, C. M., Cram, J. T., Hess, K. I., et al. (2008). Assessing creativity with divergent thinking tasks: Exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity, and the Arts, 2, 68–85.

    Google Scholar 

  • Smith, K. A., Huber, D. E., & Vul, E. (2013). Multiply-constrained semantic search in the remote associates test. Cognition, 128, 64–75.

    Google Scholar 

  • Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21, 489–510.

    Google Scholar 

  • Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American psychologist, 51, 677.

    Google Scholar 

  • Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., et al. (2010a). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. NeuroImage, 51, 578–585.

    Google Scholar 

  • Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., et al. (2010b). White matter structures associated with creativity: Evidence from diffusion tensor imaging. NeuroImage, 51, 11–18.

    Google Scholar 

  • Takeuchi, H., Taki, Y., Nouchi, R., Yokoyama, R., Kotozaki, Y., Nakagawa, S., et al. (2017). Creative females have larger white matter structures: Evidence from a large sample study. Human Brain Mapping, 38, 414–430. https://doi.org/10.1002/hbm.23369.

    Google Scholar 

  • Torrance, E. P. (1974). Torrance tests of creative thinking: Norms, technical manual, verbal forms A and B. Bensenville, IL: Scholastic Testing Service.

    Google Scholar 

  • Vartanian, O. (2012). Dissociable neural systems for analogy and metaphor: implications for the neuroscience of creativity. British Journal of Psychology, 103, 302–316.

    Google Scholar 

  • Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Science, 9, 445–453.

    Google Scholar 

  • Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., et al. (2015). A meta‐analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 2703–2718.

    Google Scholar 

  • Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.

    Google Scholar 

  • Zabelina, D. L., & Andrews-Hanna, J. R. (2016). Dynamic network interactions supporting internally-oriented cognition. Current Opinion in Neurobiology, 40, 86–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Benedek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benedek, M. (2018). The Neuroscience of Creative Idea Generation. In: Kapoula, Z., Volle, E., Renoult, J., Andreatta, M. (eds) Exploring Transdisciplinarity in Art and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-76054-4_2

Download citation

Publish with us

Policies and ethics