Power and Sample Size Considerations in Psychometrics

  • Clemens Draxler
  • Klaus D. Kubinger
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 231)


An overview and discussion of the latest developments regarding power and sample size determination for statistical tests of assumptions of psychometric models are given. Theoretical as well as computational issues and simulation techniques, respectively, are considered. The treatment of the topic includes maximum likelihood and least squares procedures applied in the framework of generalized linear (mixed) models. Numerical examples and comparisons of the procedures to be introduced are quoted.


Psychometrics Power and sample size Conditional maximum likelihood Rasch model Conditional tests Analysis of variance 


  1. 1.
    Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley, New York (2002)CrossRefGoogle Scholar
  2. 2.
    Alexandrowicz, R.W., Draxler, C.: Testing the Rasch model with the conditional likelihood ratio test: sample size requirements and bootstrap algorithms. J. Stat. Distrib. Appl. 3, 1–25 (2016)zbMATHGoogle Scholar
  3. 3.
    Andersen, E.B.: Asymptotic properties of conditional maximum likelihood estimators. J. R. Stat. Soc. Ser. B 32, 283–301 (1970)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Barndorff-Nielsen, O.: Information and Exponential Families in Statistical Theory. Wiley, New York (1978)zbMATHGoogle Scholar
  5. 5.
    Draxler, C.: Sample size determination for Rasch model tests. Psychometrika 75, 708–724 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Draxler, C., Alexandrowicz, R.W.: Sample size determination within the scope of conditional maximum likelihood estimation with special focus on testing the Rasch model. Psychometrika 80, 897–919 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Draxler, C., Zessin, J.: The power function of conditional tests of the Rasch model. Adv. Stat. Anal. 99, 367–378 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fischer, G.H., Molenaar, I.W.: Rasch Models-Foundations, Recent Developments and Applications. Springer, New York (1995)zbMATHGoogle Scholar
  9. 9.
    Fleiss, J.L.: Statistical Methods for Rates and Proportions, 2nd edn. Wiley, New York (1981)zbMATHGoogle Scholar
  10. 10.
    Haberman, S.J.: Tests for independence in two-way contingency tables based on canonical correlation and on linear-by-linear interaction. Ann. Stat. 9, 1178–1186 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kubinger, K.D., Rasch, D., Yanagida, T.: On designing data-sampling for Rasch model calibrating an achievement test. Psychol. Sci. Q. 51, 370–384 (2009)Google Scholar
  12. 12.
    Kubinger, K.D., Rasch, D., Yanagida, T.: A new approach for testing the Rasch model. Educ. Res. Eval. 17, 321–333 (2011)CrossRefGoogle Scholar
  13. 13.
    Maydeu-Olivares, A., Montano, R.: How should we assess the fit of Rasch-type models? approximating the power of goodness-of-fit statistics in categorical data analysis. Psychometrika 78, 116–133 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman & Hall, New York (1989)CrossRefGoogle Scholar
  15. 15.
    Nelder, J.A., Wedderburn, R.W.M.: Generalized linear models. J. R. Stat. Soc. Ser. A 135, 370–384 (1972)CrossRefGoogle Scholar
  16. 16.
    Neyman, J., Pearson, E.S.: On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika 20A, 263–294 (1928)zbMATHGoogle Scholar
  17. 17.
    Neyman, J., Pearson, E.S.: On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 231, 289–337 (1933)CrossRefGoogle Scholar
  18. 18.
    Pfanzagl, J.: On the consistency of conditional maximum likelihood estimators. Ann. Inst. Stat. Math. 45, 703–719 (1993)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ponocny, I.: Nonparametric goodness-of-fit tests for the Rasch model. Psychometrika 66, 437–460 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rao, C.R.: Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Proc. Camb. Philos. Soc. 44, 50–57 (1948)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rao, C.R., Sinharay, S.: Psychometrics. Handbook of Statistics, vol. 26. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  22. 22.
    Rasch, D., Rusch, T., Simeckova, M., Kubinger, K.D., Moder, K., Simecek, P.: Tests of additivity in mixed and fixed effect two-way ANOVA models with single sub-class numbers. Stat. Pap. 50, 905–916 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rasch, G.: Probabilistic models for some intelligence and attainment tests. Copenhagen: The Danish Institute of Education Research (1980). (Expanded Edition, 1980. Chicago: University of Chicago Press)Google Scholar
  24. 24.
    Silvey, S.D.: The Lagrangian multiplier test. Ann. Math. Stat. 30, 389–407 (1959)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Verhelst, N.D.: An efficient MCMC algorithm to sample binary matrices with fixed marginals. Psychometrika 73, 705–728 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Verhelst, N.D., Hatzinger, R., Mair, P.: The Rasch sampler. J. Stat. Softw. 20, 1–14 (2007)CrossRefGoogle Scholar
  27. 27.
    Wald, A.: Test of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 54, 426–482 (1943)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wilks, S.S.: The large sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938)CrossRefGoogle Scholar
  29. 29.
    Yanagida, T., Steinfeld, J.: pwrRasch: Statistical power simulation for testing the Rasch model. R package version 0.1-2 (2015).
  30. 30.
    Yanagida, T., Kubinger, K.D., Rasch, D.: Planning a study for testing the Rasch model given missing values due to the use of test-booklets. J. Appl. Meas. 16, 432–444 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University for Health and Life SciencesHallAustria
  2. 2.Faculty of PsychologyUniversity of ViennaViennaAustria

Personalised recommendations