Skip to main content

Microscopic and Mesoscopic Traffic Models

  • Chapter
  • First Online:
Freeway Traffic Modelling and Control

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Besides macroscopic traffic flow models, traffic modelling in freeway systems has also been treated with other general approaches, resulting in microscopic and mesoscopic models. Macroscopic models can surely represent large networks efficiently, since they adopt an aggregate representation of the traffic dynamics, but they generally lack the level of detail needed in modelling the individual drivers’ behaviours and choices. Microscopic models are, instead, conceived to explicitly reproduce the drivers’ responses to traffic patterns, reactions to traffic variations, interactions with other vehicles and route choices, i.e. most of the individual behaviours. Consequently, microscopic models are able to provide a lot of information about the features of traffic flow but they require a high computational effort, especially for large road networks. Mesoscopic models fill the gap between microscopic and macroscopic models, by representing the choices of individual drivers at a probabilistic level, but limiting the level of detail on driving behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoogendoorn SP, Bovy PHL (2001) State-of-the-art of vehicular traffic flow modelling. Proc Inst Mech Eng Part I, J Syst Control Eng 215:283–303

    Article  Google Scholar 

  2. van Wageningen-Kessels F, van Lint H, Vuik K, Hoogendoorn SP (2015) Genealogy of traffic flow models. EURO J Transp Logist 4:445–473

    Article  Google Scholar 

  3. Treiber M, Kesting A (2013) Traffic flow dynamics: data, models and simulation. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  4. Kitamura R, Kuwahara M (2005) Simulation approaches in transportation analysis. Springer, US

    Book  Google Scholar 

  5. BarcelĂł J (2010) Fundamentals of traffic simulation. Springer, New York

    Book  Google Scholar 

  6. Reuschel A (1950) Vehicle movements in a platoon. Oesterreichisches Ingenieur-Archir 4:193–215

    MATH  Google Scholar 

  7. Pipes LA (1953) An operational analysis of traffic dynamics. J Appl Phys 24:274–281

    Article  MathSciNet  Google Scholar 

  8. Gazis DC, Herman R, Potts RB (1959) Car-following theory of steady-state traffic flow. Oper Res 7:499–505

    Article  MathSciNet  Google Scholar 

  9. Brackstone M, McDonald M (1999) Car-following: a historical review. Transp Res Part F 2:181–196

    Article  Google Scholar 

  10. Leutzbach W (1988) Introduction to the theory of traffic flow. Springer, Berlin

    Book  Google Scholar 

  11. Chandler RE, Herman R, Montroll EW (1958) Traffic dynamics: studies in car following. Oper Res 6:165–184

    Article  MathSciNet  Google Scholar 

  12. Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow the leader models of traffic flow. Oper Res 9:545–567

    Article  MathSciNet  Google Scholar 

  13. Helly W (1959) Simulation of bottlenecks in single-lane traffic flow. In: Proceedings of the symposium on theory of traffic flow, pp 207–238

    Google Scholar 

  14. Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y (1995) Dynamical model of traffic congestion and numerical simulation. Phys Rev E 51:1035–1042

    Article  Google Scholar 

  15. Gipps PG (1986) A model for the structure of lane-changing decisions. Transp Res Part B 20:403–414

    Article  Google Scholar 

  16. Ahmed KI (1999) Modeling drivers’ acceleration and lane changing behavior. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  17. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2:2221–2229

    Google Scholar 

  18. Rickert M, Nagel K, Schreckenberg M, Latour A (1996) Two lane traffic simulations using cellular automata. Phys A 231:534–550

    Article  Google Scholar 

  19. Nagel K (1998) From particle hopping models to traffic flow theory. Transp Res Rec 1644:1–9

    Article  Google Scholar 

  20. Ossen S, Hoogendoorn SP (2011) Heterogeneity in car-following behavior: theory and empirics. Transp Res Part C 19:182–195

    Article  Google Scholar 

  21. Saifuzzaman M, Zheng Z (2014) Incorporating human-factors in car-following models: a review of recent developments and research needs. Transp Res Part C 48:379–403

    Article  Google Scholar 

  22. Koutsopoulos HN, Farah H (2012) Latent class model for car following behavior. Transp Res B 46:563–578

    Article  Google Scholar 

  23. Ceder A, May AD (1976) Further evaluation of single and two regime traffic flow models. Transp Res Rec 567:1–30

    Google Scholar 

  24. Herman R, Potts RB (1959) Single lane traffic theory and experiment. In: Proceedings of the symposium on theory of traffic flow, pp 147–157

    Google Scholar 

  25. Treiterer J, Myers JA (1974) The hysteresis phenomenon in traffic flow. In: Proceedings of the sixth international symposium on transportation and traffic theory, pp 3–38

    Google Scholar 

  26. Ozaki H (1993) Reaction and anticipation in the car following behaviour. In: Proceedings of the 13th international symposium on traffic and transportation theory, pp 349–366

    Google Scholar 

  27. Zadeh LA (1975) Fuzzy logic and approximate reasoning. Synthese 30:407–428

    Article  Google Scholar 

  28. Kikuchi C, Chakroborty P (1992) Car following model based on a fuzzy inference system. Transp Res Rec 1365:82–91

    Google Scholar 

  29. Wu J, Brackstone M, McDonald M (2005) Fuzzy sets and systems for a motorway microscopic simulation model. Fuzzy Sets Syst 116:65–76

    Article  Google Scholar 

  30. Ross TJ (2010) Fuzzy logic with engineering applications. Wiley, United Kingdom

    Book  Google Scholar 

  31. Kometani E, Sasaki T (1959) Dynamic behaviour of traffic with a non-linear spacing-speed relationship. In: Proceedings of the symposium on theory of traffic flow, pp 105–119

    Google Scholar 

  32. Newell GF (1961) Nonlinear effects in the dynamics of car following. Oper Res 9:209–229

    Article  Google Scholar 

  33. Dijker T, Bovy PHL, Vermijs RGMM (1998) Car-following under congested conditions: empirical findings. Transp Res Rec 1644:20–28

    Article  Google Scholar 

  34. Gipps PG (1981) A behavioural car-following model for computer simulation. Transp Res Part B 15:105–111

    Article  Google Scholar 

  35. Yang D, Zhu LL, Yu D (2014) An enhanced safe distance car-following model. J Shanghai Jiaotong Univ 19:115–120

    Article  Google Scholar 

  36. Hanken A, Rockwell TH (1967) A model of car following derived empirically by piece-wise regression analysis. In: Proceedings of the 3rd international symposium on the theory of traffic flow, pp 40–41

    Google Scholar 

  37. Bekey GA, Burnham GO, Seo J (1977) Control theoretic models of human drivers in car following. Hum Factors 19:399–413

    Article  Google Scholar 

  38. Aron M (1988) Car following in an urban network: simulation and experiments. In: Proceedings of the 16th PTRC meeting, pp 27–39

    Google Scholar 

  39. Xing J (1995) A parameter identification of a car following model. In: Proceedings of the second world congress on ATT, pp 739–1745

    Google Scholar 

  40. Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62:1805–1824

    Article  Google Scholar 

  41. Treiber M, Helbing D (2003) Memory effects in microscopic traffic models and wide scattering in flow-density data. Phys Rev E 68:046119

    Article  Google Scholar 

  42. Helbing D, Tilch B (1998) Generalized force model of traffic dynamics. Phys Rev E 58:133–138

    Article  Google Scholar 

  43. Lenz H, Wagner C, Sollacher R (1999) Multi-anticipative car-following model. Eur Phys J B 7:331–335

    Article  Google Scholar 

  44. Jiang R, Wu Q, Zhu Z (2001) Full velocity difference model for a car-following theory. Phys Rev E 64:017101

    Article  Google Scholar 

  45. Gong H, Liu H, Wang BH (2008) An asymmetric full velocity difference car-following model. Phys A 387:2595–2602

    Article  Google Scholar 

  46. Peng G, Sun D (2010) A dynamical model of car-following with the consideration of the multiple information of preceding cars. Phys Lett A 374:1694–1698

    Article  Google Scholar 

  47. Boer ER (1999) Car following from the driver’s perspective. Transp Res Part F 2:201–206

    Article  Google Scholar 

  48. Evans L, Rothery R (1973) Experimental measurement of perceptual thresholds in car following. Highway Res Rec 64:13–29

    Google Scholar 

  49. Evans L, Rothery R (1977) Perceptual thresholds in car following—a recent comparison. Transp Sci 11:60–72

    Article  Google Scholar 

  50. Wiedemann R (1974) Simulation des Strassenverkehrsflusses. Schriftenreihe des Instituts fr Verkehrswesen der Universitt Karlsruhe, Germany

    Google Scholar 

  51. Fritzsche HT (1994) A model for traffic simulation. Traffic Eng Control 317–321

    Google Scholar 

  52. Leutzbach W, Wiedemann R (1986) Development and applications of traffic simulation models at the Karlsruhe Institut fur Verkehrwesen. Traffic Eng Control 27:270–278

    Google Scholar 

  53. Burnham GO, Bekey GA (1976) A heuristic finite state model of the human driver in a car following situation. IEEE Trans Syst Man Cybern 6:554–562

    Article  Google Scholar 

  54. Wiedemann R, Reiter U (1992) Microscopic traffic simulation: the simulation system MISSION, background and actual state. CEC Project ICARUS, Final Report, vol 2, Appendix A

    Google Scholar 

  55. Michaels R (1963) Perceptual factors in car following. In: Proceedings of the 2nd international symposium on the theory of road traffic flow, pp 44–59

    Google Scholar 

  56. Andersen GJ, Sauer CW (2007) Optical information for car following: the driving by visual angle (DVA) model. Hum Factors: J Hum Factors Ergonomics Soc 49:878–896

    Article  Google Scholar 

  57. Jin S, Wang DH, Huang ZY, Tao PF (2011) Visual angle model for car-following theory. Phys A 390:1931–1940

    Article  Google Scholar 

  58. Hamdar SH, Mahmassani HS (2008) From existing accident-free car-following models to colliding vehicles: exploration and assessment. Transp Res Rec 2088:45–56

    Article  Google Scholar 

  59. Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47:263–291

    Article  Google Scholar 

  60. Talebpour A, Mahmassani HS, Hamdar SH (2011) Multiregime sequential risk-taking model of car-following behavior. Transp Res Rec 2260:60–66

    Article  Google Scholar 

  61. Van Winsum W (1999) The human element in car following models. Transp Res Part F 2:207–211

    Article  Google Scholar 

  62. Treiber M, Kesting A, Helbing D (2006) Delays, inaccuracies and anticipation in microscopic traffic models. Physica A 360:71–88

    Article  Google Scholar 

  63. Bevrani K, Chung E (2012) A safety adapted car following model for traffic safety studies. In: Stanton NA (ed) Advances in human aspects of road and rail transportation. CRC Press, USA, pp 550–559

    Google Scholar 

  64. Toledo T (2007) Driving behaviors: models and research directions. Transp Rev 27:65–84

    Article  Google Scholar 

  65. Moridpour S, Sarvi M, Rose G (2010) Lane changing models: a critical review. Transp Lett 2:157–173

    Article  Google Scholar 

  66. Zheng Z (2014) Recent developments and research needs in modeling lane changing. Transp Res Part B 60:16–32

    Article  Google Scholar 

  67. Pande A, Abdel-Aty M (2006) Assessment of freeway traffic parameters leading to lane-change related collisions. Accid Anal Prev 38:936–948

    Article  Google Scholar 

  68. Zheng Z, Ahn S, Monsere CM (2010) Impact of traffic oscillations on freeway crash occurrences. Accid Anal Prev 42:626–636

    Article  Google Scholar 

  69. Cassidy M, Rudjanakanoknad J (2005) Increasing the capacity of an isolated merge by metering its on-ramp. Transp Res Part B 39:896–913

    Article  Google Scholar 

  70. Kerner B, Rehborn H (1996) Experimental features and characteristics of traffic jams. Phys Rev E 53:1297–1300

    Article  Google Scholar 

  71. Ahn S, Cassidy M (2007) Freeway traffic oscillations and vehicle lane-change maneuvers. In: Proceedings of the 17th international symposium on transportation and traffic theory, pp 691–710

    Google Scholar 

  72. Zheng Z, Ahn S, Chen D, Laval J (2011) Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet transform. Transp Res Part B 45:1378–1388

    Article  Google Scholar 

  73. Yang Q, Koutsopoulos HN (1996) A microscopic traffic simulator for evaluation of dynamic traffic management systems. Transp Res Part C 4:113–129

    Article  Google Scholar 

  74. Kesting A, Treiber M, Helbing D (1999) General lane-changing model MOBIL for car-following models. Transp Res Rec 2007:86–94

    Google Scholar 

  75. Sheu JB, Ritchie SG (2001) Stochastic modelling and real-time prediction of vehicular lane-changing behavior. Transp Res Part B 35:695–716

    Article  Google Scholar 

  76. Moridpour S, Rose G, Sarvi M (2009) Modelling the heavy vehicle drivers? Lane changing decision under heavy traffic conditions. J Road Transp Res 18:49–57

    Google Scholar 

  77. Laval JA, Daganzo CF (2006) Lane-changing in traffic streams. Transp Res Part B 40:251–264

    Article  Google Scholar 

  78. von Neumann J (1948) The general and logical theory of automata. In: Jeffress LA (ed) Cerebral mechanisms in behavior. Wiley, NewYork, pp 1–41

    Google Scholar 

  79. Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55:601–644

    Article  MathSciNet  Google Scholar 

  80. Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329:199–329

    Article  MathSciNet  Google Scholar 

  81. Knospe W, Santen L, Schadschneider A, Schreckenberg M (2004) An empirical test for cellular automaton models of traffic flow. Phys Rev E 70:016115

    Article  Google Scholar 

  82. Maerivoet S, De Moor B (2005) Cellular automata models of road traffic. Phys Rep 419:1–64

    Article  MathSciNet  Google Scholar 

  83. Caligaris C, Sacone S, Siri S (2009) Model predictive control for multiclass freeway traffic. In: Proceedings of the European control conference, pp 1764–1769

    Google Scholar 

  84. Hafstein SF, Chrobok R, Pottmeier A, Schreckenberg M, Mazur FC (2004) A high-resolution cellular automata traffic simulation model with application in a freeway traffic information system. Comput-Aided Civil Infrastruct Eng 19:338–350

    Article  Google Scholar 

  85. Nagel K, Wolf DE, Wagner P, Simon P (1998) Two-lane traffic rules for cellular automata: a systematic approach. Phys Rev E 58:1425–1437

    Article  Google Scholar 

  86. Choa F, Milam RT, AICP, Stanek D (2004) CORSIM, PARAMICS, and VISSIM: what the manuals never told you. In: Proceedings of the Ninth TRB conference on the application of transportation planning methods

    Google Scholar 

  87. Panwai S, Dia H (2005) Comparative evaluation of microscopic car-following behavior. IEEE Trans Intell Transp Syst 6:314–325

    Article  Google Scholar 

  88. Olstam JJ, Tapani A (2004) Comparison of car-following models. Report of the Swedish National Road and Transport Research Institute

    Google Scholar 

  89. Buckley DJ (1968) A semi-poisson model of traffic flow. Transp Sci 2:107–133

    Article  Google Scholar 

  90. Wasielewski P (1974) An integral equation for the semi-poisson headway distribution model. Transp Sci 8:237–247

    Article  Google Scholar 

  91. Branston D (1976) Models of single lane time headway distributions. Transp Sci 10:125–148

    Article  Google Scholar 

  92. Cowan RJ (1975) Useful headway models. Transp Res 9:371–375

    Article  Google Scholar 

  93. Hoogendoorn SP, Bovy PHL (1998) A new estimation technique for vehicle-type specific headway distribution. Transp Res Rec 1646:18–28

    Article  Google Scholar 

  94. Krbalek M, Seba P, Wagner P (2001) Headways in traffic flow: remarks from a physical perspective. Phys. Rev. E 64:066119

    Google Scholar 

  95. Treiber M, Kesting A, Helbing D (2006) Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps. Phys Rev E 74:016123

    Article  Google Scholar 

  96. Herrmann M, Kerner BS (1998) Local cluster effect in different traffic flow models. Phys A 55:163–188

    Article  Google Scholar 

  97. Mahnke R, Kühne R (2007) Probabilistic description of traffic breakdown. In: Schadschneider A, Poschel T, Kühne R, Schreckenberg M, Wolf DE (eds) Traffic and granular flow. Springer, New York, pp 527–536

    Google Scholar 

  98. Mahnke R, Kaupu\(\check{z}\)s J, Lubashevsky I (2005) Probabilistic description of traffic flow. Phys Rep 408:1–130

    Google Scholar 

  99. Prigogine I (1961) A Boltzmann-like approach to the statistical theory of traffic flow. In: Theory of traffic flow. Elsevier, Amsterdam, pp 158–164

    Google Scholar 

  100. Prigogine I, Herman R (1971) Kinetic theory of vehicular traffic. American Elsevier, New York

    MATH  Google Scholar 

  101. Nelson P (1995) A kinetic theory of vehicular traffic and its associated bimodal equilibrium solutions. Transp Theory Stat Phys 24:383–409

    Article  Google Scholar 

  102. Paveri-Fontana SL (1975) On Boltzmann-Like treatments for traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis. Transp Res Part B 9:225–235

    Google Scholar 

  103. Helbing D (1997) Verkehrsdynamik. Springer, Berlin

    Book  Google Scholar 

  104. Nelson P, Sopasakis A (1998) The Prigogine-Herman kinetic model predicts widely scattered traffic flow data at high concentrations. Transp Res Part B 32:589–604

    Article  Google Scholar 

  105. Helbing D (1997) Modeling multi-lane traffic flow with queuing effects. Phys A 242:175–194

    Article  Google Scholar 

  106. Hoogendoorn SP, Bovy PHL (2000) Modelling multiple user-class traffic flow. Transp Res Part B 34:123–146

    Article  Google Scholar 

  107. Hoogendoorn SP, Bovy PHL (2001) Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow. Transp Res Part B 35:317–336

    Article  Google Scholar 

  108. Hoogendoorn SP, Bovy PHL (2000) Continuum modeling of multiclass traffic flow. Transp Res Part B 34:123–146

    Article  Google Scholar 

  109. Hoogendoorn SP, Bovy PHL (2001) Platoon-based multiclass modeling of multilane traffic flow. Netw Spatial Econ 1:137–166

    Article  Google Scholar 

  110. Delis AI, Nikolos IK, Papageorgiou M (2015) Macroscopic traffic flow modeling with adaptive cruise control: development and numerical solution. Comput Math Appl 70:1921–1947

    Article  MathSciNet  Google Scholar 

  111. Ngoduy D (2013) Instability of cooperative adaptive cruise control traffic flow: a macroscopic approach. Commun Nonlinear Sci Numer Simul 18:2838–2851

    Article  MathSciNet  Google Scholar 

  112. Fermo L, Tosin A (2013) A fully-discrete-state kinetic theory approach to modeling vehicular traffic. SIAM J Appl Math 73:1533–1556

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Ferrara .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrara, A., Sacone, S., Siri, S. (2018). Microscopic and Mesoscopic Traffic Models. In: Freeway Traffic Modelling and Control. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-75961-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75961-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75959-3

  • Online ISBN: 978-3-319-75961-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics