Advertisement

Modeling of Microstructures in a Cosserat Continuum Using Relaxed Energies

  • Muhammad Sabeel Khan
  • Klaus HacklEmail author
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 27)

Abstract

Granular materials tend to exhibit distinct patterns under deformation consisting of layers of counter-rotating particles. In this article, we are going to model this phenomenon on a continuum level by employing the calculus of variations, specifically the concept of energy relaxation. In the framework of Cosserat continuum theory the free energy of the material is enriched with an interaction energy potential taking into account the counter rotations of the particles. The total energy thus becomes non-quasiconvex, giving rise to the development of microstructures. Relaxation theory is then applied to compute its exact quasiconvex envelope. It is worth mentioning that there are no further assumptions necessary here. The computed relaxed energy yields all possible displacement and micro-rotation field fluctuations as minimizers. Based on a two-field variational principle the constitutive response of the material is derived. Results from numerical computations demonstrating the properties of relaxed potential are shown.

Keywords

Cosserat Continuum Theory Quasiconvex Envelope Interaction Potential Energy Material Regime Modular Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The first author gratefully acknowledge the funding by Higher Education Commission (HEC) of Pakistan and highly appreciate the support by Deutscher Akademischer Austausch Dienst (DAAD) for this research work.

References

  1. 1.
    Alonso-Marroqu\(\acute {i}\)n, F., Vardoulakis, I., Herrmann, H.J., Weatherley, D., Mora, P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E 74, 301–306 (2006). http://dx.doi.org/doi:10.1103/PhysRevE.74.031306
  2. 2.
    Alsaleh, M.I., Voyiadjis, G.Z., Alshibli, K.A.: Modeling strain localization in granular materials using micropolar theory: Mathematical formulations. Int. J. Numer. Anal. Meth. Goemech. 30, 1501–1524 (2006). http://dx.doi.org/doi:10.1002/nag.533 CrossRefzbMATHGoogle Scholar
  3. 3.
    Alshibli, K.A., Alsaleh, M.I., Voyiadjis, G.Z.: Modelling strain localization in granular materials using micropolar theory: Numerical implementation and verification. Int. J. Numer. Anal. Meth. Goemech. 30, 1525–1544 (2006). http://dx.doi.org/doi:10.1002/nag.534 CrossRefzbMATHGoogle Scholar
  4. 4.
    Aranda, E., Pedregal, P.: Numerical approximation of non-homogeneous, non-convex vector variational problems. Numer. Math. 89, 425–444 (2001). http://dx.doi.org/doi:10.1007/s002110100294
  5. 5.
    Aranson, I., Tsimring, L.: Granular Patterns. Oxford University Press, Oxford (2009)Google Scholar
  6. 6.
    Bagnold, R.A.: The Physics of Blown Sand and Desert Dunes. Methuen and Co. Ltd., London (1941)Google Scholar
  7. 7.
    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1976). http://dx.doi.org/doi:10.1007/BF00279992 CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987). http://dx.doi.org/doi:10.1007/bf00281246 CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Bardet, J.P.: Observation on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 8, 159–182 (1994). http://dx.doi.org/doi:10.1016/0167-6636(94)00006-9 CrossRefGoogle Scholar
  10. 10.
    Bartels, S.: Numerical Analysis of Some Non-Convex Variational Problems. PhD thesis. Christian-Alberechts-Universität, Kiel (2001)Google Scholar
  11. 11.
    Bauer, E., Huang, W.: Numerical investigation of strain localization in a hypoplastic cosserat material under shearing. In: Desai (ed.) Proceedings of the 10th International Conference on Computer Methods and Advances in Geomechanics, pp. 525–528. Taylor & Francis (2001)Google Scholar
  12. 12.
    Carstensen, C., Conti, S., Orlando, A.: Mixed analytical-numerical relaxation in finite single-slip crystal plastictiy. Continuum Mech. Thermodyn. 20, 275–301 (2008). http://dx.doi.org/doi:10.1007/s00161-008-0082-0 CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Carstensen, C., Hackl, K., Mielke, A.: Nonconvex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. A 458, 299–317 (2002). http://dx.doi.org/doi:10.1098/rspa.2001.0864 CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Carstensen, C., Plech\(\acute {a}\check {c}\), P.: Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66, 997–1026 (1997). http://dx.doi.org/doi:10.1090/S0025-5718-97-00849-1 CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Carstensen, C., Roub\(\acute {i}\check {c}\)ek, T.: Numerical approximation of young measures in non-convex variational problems. Numer. Math. 84, 395–415 (2000). http://dx.doi.org/doi:10.1007/s002119900122
  16. 16.
    Carstensen, C., Roub\(\acute {i}\check {c}\)ek, T.: Numerical approximation of young measures in non-convex variational problems. Tech. Rep., 97–18 (1997). Universität KielGoogle Scholar
  17. 17.
    Chang, C.S., Hicher, P.Y.: An elasto-plastic model for grnaular materials with microstructural consideration. Int. J. Solids Struct. 42, 4258–4277 (2005). http://dx.doi.org/doi:10.1016/j.ijsolstr.2004.09.021 CrossRefzbMATHGoogle Scholar
  18. 18.
    Chang, C.S., Ma, L.: Elastic material constants for isotropic granular solids with particle rotation. Int. J. Solids Struct. 29, 1001–1018 (1992). http://dx.doi.org/doi:10.1016/0020-7683(92)90071-Z CrossRefzbMATHGoogle Scholar
  19. 19.
    Chipot, M.: The appearance of microstructures in problems with incompatible wells and their numerical approach. Numer. Math. 83, 325–352 (1999). http://dx.doi.org/doi:10.1007/s002110050452 CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Chipot, M., Collins, C.: Numerical approximation in variational problems with potential wells. SIAM J. Numer. Anal. 29, 1002–1019 (1992). http://dx.doi.org/doi:10.1137/0729061 CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Collins, C., Kinderlehrer, D., Luskin, M.: Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal. 28, 321–332 (1991). http://dx.doi.org/doi:10.1137/0728018 CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Conti, S., Hauret, P., Ortiz, M.: Conurrent multiscale computing of deformation microstructure by relaxation and local enrichment with application to single-crystal plasticity. Multiscale Model. Simul. 6, 135–157 (2007). http://dx.doi.org/doi:10.1137/060662332 CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Conti, S., Ortiz, M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Rational Mech. Anal. 176, 103–147 (2005). http://dx.doi.org/doi:10.1007/s00205-004-0353-2 CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178, 125–148 (2005). http://dx.doi.org/doi:10.1007/s00205-005-0371-8 CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin-Heidelberg-New York (1989)CrossRefGoogle Scholar
  26. 26.
    Dacorogna, B.: Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension. Discrete Contin. Dyn. Syst. B. 1, 257–263 (2001). http://dx.doi.org/doi:10.3934/dcdsb.2001.1.257 CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat-continuum. Eng. Comp. 8, 317–332 (1991). http://dx.doi.org/doi:10.1108/eb023842 CrossRefGoogle Scholar
  28. 28.
    DeSimone, A., Dolzmann, G.: Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Arch. Ration. Mech. Anal. 161, 181–204 (2002). http://dx.doi.org/doi:10.107/s002050100174
  29. 29.
    Dolzmann, G., Walkington, N.J.: Estimates for numerical approximations of rank one convex envelopes. Numer. Math. 85, 647–663 (2000). http://dx.doi.org/doi:10.1007/PL00005395 CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Le Dret, H., Raoult, A.: The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function. Proc. Roy. Soc. Edinburgh 125A, 1179–1192 (1995). http://dx.doi.org/doi:10.1017/S0308210500030456 CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Ehlers, W., Volk, W.: On shear band localization phenomena of liquid-saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations. Mech. Cohes.-Frict. Mat. 2, 301–320 (1997). http://dx.doi.org/doi:10.1002/(SICI)1099-1484(199710)2:4<301::AID-CFM34>3.0.CO;2-D(10.1002/(SICI)1099-1484(199710)2:4<301::AID-CFM34>3.0.CO;2-D)
  32. 32.
    Govindjee, S., Hackl, K., Heinen, R.: An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Continuum Mech. Thermodynam. 18, 443–453 (2007). http://dx.doi.org/doi:10.1007/s00161-006-0038-1(10.1007/s00161-006-0038-1)
  33. 33.
    Gudehus, G., Nübel, K.: Evolution of shear bands in sand. Géotechnique 54, 187–201 (2004). http://dx.doi.org/doi:10.1680/geot.2004.54.3.187(10.1680/geot.2004.54.3.187)
  34. 34.
    Gürses, E., Miehe, C.: On evolving deformation microstructures in non-convex partially damaged solids. J. Mech. Phys. Solids 59, 1268–1290 (2011). http://dx.doi.org/doi:10.1016/j.jmps.2011.01.002(10.1016/j.jmps.2011.01.002)
  35. 35.
    Hackl, K., Heinen, R.: An upper bound to the free energy of n-variant polycrystalline shape memory alloys. J. Mech. Phys. Solids. 56, 2832–2843 (2008). http://dx.doi.org/doi:10.1016/j.jmps.2008.04.005(10.1016/j.jmps.2008.04.005)
  36. 36.
    Kohn, R.V.: The relaxation of a double-well energy. Continum Mech. Thermodynam. 3, 193–236 (1991). http://dx.doi.org/doi:10.1007/BF01135336 CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems I. Comm. Pure Appl. Math. 39, 113–137 (1986). http://dx.doi.org/doi:10.1002/cpa.3160390107 CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems II. Comm. Pure Appl. Math. 39, 139–182 (1986). http://dx.doi.org/doi:10.1002/cpa.3160390202 CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Kohn, R.V., Vogelius, M.: Relaxation of a variational method for impedance computed tomography. Comm. Pure Appl. Math. 40, 745–777 (1987). http://dx.doi.org/doi:10.1002/cpa.3160400605 CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Lambrecht, M., Miehe, C., Dettmar, J.: Energy relaxation of non-convex incremental stress potentials in a strain-softening elastic-plastic bar. Int. J. Soids Struct. 40, 1369–1391 (2003). http://dx.doi.org/doi:10.1016/S0020-7683(02)00658-3 CrossRefzbMATHGoogle Scholar
  41. 41.
    Morrey, C.B.: Quasi-convextiy and the lower seimicontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952). See http://projecteuclid.org/euclid.pjm/1103051941http://projecteuclid.org/euclid.pjm/1103051941
  42. 42.
    Nicolaides, R.A., Walkington, N.J.: Computation of microsturcture utilizing Young measures representations. In: Rogers, C.A., Rogers, R.A. (eds.) Recent Advances in Adaptive and Sensory Materials and their Applications, pp. 131–141.Technomic Publ., Lancaster (1992)Google Scholar
  43. 43.
    Nicolaides, R.A., Walkington, N.J.: Strong convergence of numerical solutions to degenrate variational problems. Math. Comp. 64, 117–127 (1992). See http://www.jstor.org/stable/2153325http://www.jstor.org/stable/2153325
  44. 44.
    Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Géotechnique 48, 465–481 (1998). http://dx.doi.org/doi:10.1680/geot.1998.48.4.465 CrossRefGoogle Scholar
  45. 45.
    Papanicolopulos, S.A., Veveakis, E.: Sliding and rolling dissipation in Cosserat plasticity. Granular Matter 13, 197–204 (2011). http://dx.doi.org/doi:10.1007/s10035-011-0253-8 CrossRefGoogle Scholar
  46. 46.
    Pasternak, E., Mühlhaus, H.B.: Cosserat continuum modelling of granulate materials. In: Valliappan, S., Khalili, N. (eds.) Computational Mechanics - New Frontiers for New Millennium, pp. 1189–1194. Elsevier Science (2001)Google Scholar
  47. 47.
    Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser (1997)CrossRefGoogle Scholar
  48. 48.
    Pedregal, P.: Numerical approximation of parametrized measures. Numer. Funct. Anal. Optim. 16, 1049–1066 (1995). http://dx.doi.org/doi:10.1080/01630569508816659 CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Pedregal, P.: On numerical analysis of non-convex variational problems. Numer. Math. 74, 325–336 (1996). http://dx.doi.org/doi:10.1007/s002110050219 CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Raoult, A.: Quasiconvex envelopes in nonlinear elasticity. In: Schröder, J., Neff, P. (ed.) Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, pp. 17–51. Springer, Vienna (2010). http://dx.doi.org/doi:10.1007/978-3-7091-0174-2 CrossRefGoogle Scholar
  51. 51.
    Roub\(\acute {i}\check {c}\)ek, T.: Relaxation in Optimization Theory and Variational Calculus. Valter de Gruyter, Berlin, New York (1997)Google Scholar
  52. 52.
    Roub\(\acute {i}\check {c}\)ek, T.: Finite element approximation of a microstructure evolution. Math. Methods Appl. Sci. 17, 377–393 (1994). http://dx.doi.org/doi:10.1002/mma.1670170505 CrossRefMathSciNetzbMATHGoogle Scholar
  53. 53.
    Roub\(\acute {i}\check {c}\)ek, T.: Numerical approximation of relaxed variational problems. J. Convex Anal. 3, 329–347 (1996). See http://eudml.org/doc/i33027http://eudml.org/doc/233027
  54. 54.
    Sawada, K., Zhang, F., Yashima, A.: Rotation of granular material in laboratory tests and its numerical simulation using TIJ-Cosserat continuum theory. Comput. Methods, 1701–1706 (2006). http://dx.doi.org/doi:10.1007/978-1-4020-3953-9_104
  55. 55.
    Suiker, A.S.J., de Borst, R., Chang, C.S.: Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory. Acta Mechanica 149, 161–180 (2001). http://dx.doi.org/doi:10.1007/BF01261670 CrossRefGoogle Scholar
  56. 56.
    Suiker, A.S.J., de Borst, R., Chang, C.S.: Micro-mechanical modelling of granular material. Part 2: Plane wave propagation in infinite media. Acta Mechanica 149, 181–200 (2001). http://dx.doi.org/doi:10.1007/BF01261671 CrossRefGoogle Scholar
  57. 57.
    Tejchman, J., Niemunis, A.: FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material. Granular Matter. 8, 205–220 (2006). http://dx.doi.org/doi:10.1007/s10035-006-0009-z CrossRefGoogle Scholar
  58. 58.
    Tordesillas, A., Peters, J.F., Muthuswamy, M.: Role of particle rotations and rolling resistance in a semi-infinite particulate solid indented by a rigid flat punch. ANZIAM J. 46, C260–C275 (2005)CrossRefGoogle Scholar
  59. 59.
    Tordesillas, A., Walsh, S.D.C.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124, 106–111 (2002). http://dx.doi.org/doi:10.1016/S0032-5910(01)00490-9 CrossRefGoogle Scholar
  60. 60.
    Tordesillas, A., Walsh, S.D.C., Gardiner, B.: Bridging the length scales: Micromechanics of granular media. BIT Numer. Maths. 44, 539–556 (2004). http://dx.doi.org/doi:10.1023/B:BITN.0000046817.60322.ed MathSciNetCrossRefGoogle Scholar
  61. 61.
    Trinh, B.T., Hackl, K.: Performance of mixed and enhanced finite elements for strain localization in hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 35, 1125–1150 (2012).  https://doi.org/10.1002/nag.1042 CrossRefGoogle Scholar
  62. 62.
    Trinh, B.T., Hackl, K.: Modelling of shear localization in solids by means of energy relaxation. Asia Pac. J. Comput. Eng. 1, 1–21 (2014)CrossRefGoogle Scholar
  63. 63.
    Trinh, B.T., Hackl, K.: A model for high temperature creep of single crystal superalloys based on nonlocal damage and viscoplastic material behavior. Contin. Mech. Thermodyn. 26, 551–562 (2014)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Young, L.C.: Generalized Curves and the Existence of an Attained Absolute Minimum in the Calculus of Variations, pp. 212–234 ( 1937)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lehrstuhl für Mechanik-MaterialtheorieRuhr-UniversitätBochumGermany

Personalised recommendations