Weak Lower Semicontinuity by Means of Anisotropic Parametrized Measures

  • Agnieszka Kałamajska
  • Stefan Krömer
  • Martin KružíkEmail author
Part of the Springer INdAM Series book series (SINDAMS, volume 27)


It is well known that besides oscillations, sequences bounded only in L1 can also develop concentrations, and if the latter occurs, we can at most hope for weak convergence in the sense of measures. Here we derive a new tool to handle mutual interferences of an oscillating and concentrating sequence with another weakly converging sequence. We introduce a couple of explicit examples showing a variety of possible kinds of behavior and outline some applications in Sobolev spaces.



This work was partly done during MK’s visiting Giovanni-Prodi professorship at the University of Würzburg, Germany. The hospitality and support of the Institute of Mathematics is gratefully acknowledged. This work was also supported by GAČR through projects 16-34894L and 17-04301S. The work of AK was supported by NCN grant 2011/03/N/ST1/00111.


  1. 1.
    Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86, 125–145 (1984)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alibert, J., Bouchitté, G.: Non-uniform integrability and generalized Young measures. J. Convex Anal. 4, 125–145 (1997)Google Scholar
  3. 3.
    Baía, M., Krömer, S., Kružík, M.: Generalized W 1, 1-Young measures and relaxation of problems with linear growth. Preprint arXiv:1611.04160v1, submitted (2016)Google Scholar
  4. 4.
    Ball, J.M.: A version of the fundamental theorem for Young measures. In: Rascle, M., Serre, D., Slemrod, M. (eds.) PDEs and Continuum Models of Phase Transition. Lecture Notes in Physics, vol. 344, pp. 207–215. Springer, Berlin (1989)Google Scholar
  5. 5.
    Ball, J.M., Zhang K.-W.: Lower semicontinuity of multiple integrals and the biting lemma. Proc. Roy. Soc. Edinburgh 114A, 67–379 (1990)Google Scholar
  6. 6.
    Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59, 703–766 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Claeys, M., Henrion, D., Kružík, M.: Semi-definite relaxations for optimal control problems with oscillations and concentration effects. ESAIM Control Optim. Calc. Var. 23, 95–117 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, Berlin (2008)Google Scholar
  9. 9.
    DiPerna, R.J., Majda, A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108, 667–689 (1987)Google Scholar
  10. 10.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part I. Interscience, New York (1967)Google Scholar
  11. 11.
    Engelking, R.: General topology. Translated from the Polish by the author, 2nd edn. Heldermann Verlag, Berlin (1989)Google Scholar
  12. 12.
    Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. AMS, Providence (1990)Google Scholar
  13. 13.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)Google Scholar
  14. 14.
    Fonseca, I., Müller, S., Pedregal, P.: Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29, 736–756 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Henrion, D., Kružík, M., Weisser, T.: Optimal control problems with oscillations, concentrations, and discontinuities. In preparation (2017)Google Scholar
  16. 16.
    Kałamajska, A.: On Young measures controlling discontinuous functions. J. Conv. Anal. 13(1), 177–192 (2006)Google Scholar
  17. 17.
    Kałamajska, A., Kružík, M.: Oscillations and concentrations in sequences of gradients. ESAIM Control Optim. Calc. Var. 14, 71–104 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kinderlehrer, D., Pedregal, P.: Characterization of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115, 329–365 (1991)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4, 59–90 (1994)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kozarzewski, P.: On certain compactifcation of an arbitrary subset of \(\mathbb {R}^n\) and its applications to DiPerna-Majda measures theory. In preparationGoogle Scholar
  21. 21.
    Kristensen, J., Rindler, F.: Characterization of generalized gradient Young measures generated by sequences in W 1, 1 and BV . Arch. Ration. Mech. Anal. 197, 539–598 (2010); Erratum 203, 693–700 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Krömer, S.: On the role of lower bounds in characterizations of weak lower semicontinuity of multiple integrals. Adv. Calc. Var. 3, 387–408 (2010)Google Scholar
  23. 23.
    Krömer, S., Kružík, M.: Oscillations and concentrations in sequences of gradients up to the boundary. J. Convex Anal. 20, 723–752 (2013)Google Scholar
  24. 24.
    Kružík, M., Roubíček, T.: On the measures of DiPerna and Majda. Mathematica Bohemica 122, 383–399 (1997)Google Scholar
  25. 25.
    Kružík, M., Roubíček, T.: Optimization problems with concentration and oscillation effects: relaxation theory and numerical approximation. Numer. Funct. Anal. Optim. 20, 511–530 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Licht, C., Michaille, G., Pagano, S.: A model of elastic adhesive bonded joints through oscillation-concentration measures. J. Math. Pures Appl. 87, 343–365 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Meyers, N.G.: Quasi-convexity and lower semicontinuity of multiple integrals of any order. Trans. Am. Math. Soc. 119, 125–149 (1965)Google Scholar
  28. 28.
    Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)Google Scholar
  29. 29.
    Paroni, R., Tomassetti, G.: A variational justification of linear elasticity with residual stress. J. Elasticity 97, 189–206 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Paroni, R., Tomassetti, G.: From non-linear elasticity to linear elasticity with initial stress via Γ-convergence. Cont. Mech. Thermodyn. 23, 347–361 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pedregal, P.: Parametrized Measures and Variational Principles. Birkäuser, Basel (1997)CrossRefGoogle Scholar
  32. 32.
    Pedregal, P.: Multiscale Young measures. Trans. Am. Math. Soc. 358, 591–602 (2005)CrossRefGoogle Scholar
  33. 33.
    Roubíček, T.: Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin (1997)CrossRefGoogle Scholar
  34. 34.
    Schonbek, M.E.: Convergence of solutions to nonlinear dispersive equations. Comm. Partial Differ. Equ. 7, 959–1000 (1982)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York (1972)zbMATHGoogle Scholar
  36. 36.
    Young, L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30, 212–234 (1937)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Agnieszka Kałamajska
    • 1
  • Stefan Krömer
    • 2
  • Martin Kružík
    • 2
    Email author
  1. 1.Institute of MathematicsUniversity of WarsawWarsawPoland
  2. 2.The Czech Academy of Sciences, Institute of Information Theory and AutomationPraha 8Czech Republic

Personalised recommendations