Skip to main content

Ants: Ecology and Impacts in Dead Wood

  • Chapter
  • First Online:
Saproxylic Insects

Part of the book series: Zoological Monographs ((ZM,volume 1))

Abstract

Although rarely considered as a saproxylic insect group, ants are an important, highly abundant insect taxon in dead wood environments worldwide. Ants directly impact the dead wood environment primarily through nesting in standing dead trees, logs, stumps, and coarse and fine woody materials, contributing to the physical breakdown of woody materials. Ants indirectly impact the dead wood environment through predation of a wide variety of arthropods, particularly termites, and by serving as a food source for other animals, particularly birds (woodpeckers) and bears that physically break down dead wood to prey upon ant colonies. The known impacts of ant nesting and predation in dead wood are reviewed with a case study that provides new information on the role of abiotic factors affecting nesting site location in dead wood in the eastern temperate US forests. Results showed horizontal and vertical nest stratification of ant nests that shifted with spatial scale. At broad scales, climate determines disparate ranges among species across a latitudinal gradient. At the scale of a forest floor, however, microsite temperature, moisture, and biotic interactions affect nesting locations in downed logs. Future research aimed at better understanding the interactions between ants and other organisms in dead wood environments is necessary to improve our understanding of the importance of ants in shaping dead wood communities and ecosystem processes like decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T (1990) Evolution of worker caste in termites. In: Veeresh GK, Mallik B, Viraktamath CA (eds) Social insects and the environment. Oxford/IBH, New Dehli, pp 29–30

    Google Scholar 

  • Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Akre RD, Hansen LD (1990) Management of carpenter ants. In: Vander Meer RK, Jaffe K, Cedeno A (eds) Applied myrmecology: a world perspective. Westview, Boulder, pp 693–700

    Google Scholar 

  • Andersen AN (1986) Diversity, seasonality and community organization of ants at adjacent heath and woodland sites in southeastern Australia. Aust J Zool 34:53–64

    Article  Google Scholar 

  • Anderson MT, Mathis A (1999) Diets of two sympatric neotropical salamanders, Bolitoglossa mexicana and B. rufiscens, with notes on reproduction for B. rufiscens. J Herpetol 33:601–607

    Article  Google Scholar 

  • Andrew N, Rodgerson L, York A (2000) Frequent fuel-reduction burning: the role of logs and associated leaf litter in the conservation of ant biodiversity. Austral Ecol 25:99–107

    Article  Google Scholar 

  • Ausmus BS (1977) Regulation of wood decomposition rates by arthropod and annelid populations. Ecol Bull 25:180–192

    CAS  Google Scholar 

  • Banschbach VS, Levit N, Herbers JM (1997) Nest temperatures and thermal preferences of a forest ant species: is seasonal polydomy a thermoregulatory mechanism? Insect Soc 44:109–122

    Article  Google Scholar 

  • Bargali HS, Akhtar N, Chauhan NPS (2004) Feeding ecology of sloth bears in a disturbed area in central India. Ursus 15:212–217

    Article  Google Scholar 

  • Baroni-Urbani C, Pisarski B (1978) Appendix 1. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 333–339

    Google Scholar 

  • Basalingappa S (1970) Environmental hazards to the reproductives of Odontotermes assmuthi Holmgren. Ind Zool 1:45–50

    Google Scholar 

  • Bayliss J, Fielding A (2002) Termitophagous foraging by Pachycondyla analis (Formicidae, Ponerinae) in a Tanzanian coastal dry forest. Sociobiology 39:102–122

    Google Scholar 

  • Blake CH (1941) Ants preying on termites (Hymen. Formicidae; Isoptera Rhinotermitidae). Entomol News 52:38

    Google Scholar 

  • Boddy L, Frankland JC, van West P (2008) Ecology of saprotrophic basidiomycetes. Academic Press, London

    Google Scholar 

  • Bolton B, Fisher BL (2008) Afrotropical ants of the ponerine genera Centromyrmex Mayr, Promyopias Santschi gen. rev. and Feroponera gen. n., with a revised key to genera of African Ponerinae (Hymenoptera: Formicidae). Zootaxa 1929:1–37

    Google Scholar 

  • Booher D, MacGown JA, Hubbell SP, Duffield RM (2017) Density and dispersion of cavity dwelling ant species in nuts of Eastern US forest floors. Trans Am Entomol Soc 143:79–93

    Article  Google Scholar 

  • Boucher P, Hebert C, Francoeur A, Sirois L (2015) Postfire succession of ants (Hymenoptera: Formicidae) nesting in dead wood of northern boreal forest. Environ Entomol 44:1316–1327

    Article  PubMed  Google Scholar 

  • Bradford MA, Warren RJ, Baldrien P et al (2014) Climate fails to predict wood decomposition at regional scales. Nat Clim Chang 4:625–630

    Article  CAS  Google Scholar 

  • Bradford MA, Berg B, Maynard DS et al (2016) Understanding the dominant controls on litter decomposition. J Ecol 104:229–238

    Article  CAS  Google Scholar 

  • Brown MJF (1999) Nest relocation and encounters between colonies of the seed-harvesting ant Messor andrei. Insect Soc 46:66–70

    Article  Google Scholar 

  • Buczkowski G, Bennett G (2007) Protein marking reveals predation on termites by the woodland ant, Aphaenogaster rudis. Insect Soc 54:219–224

    Article  Google Scholar 

  • Buczkowski G, Bennett G (2008) Behavioral interactions between Aphaenogaster rudis (Hymenoptera: Formicidae) and Reticulitermes flavipes (Isoptera: Rhinotermitidae): the importance of physical barriers. J Insect Behav 21:296–305

    Article  Google Scholar 

  • Cabrera BJ, Kamble ST (2001) Effects of decreasing thermophotoperiod on the Eastern subterranean termite (Isoptera: Rhinotermitidae). Environ Entomol 30:166–171

    Article  Google Scholar 

  • Calaby JH (1960) Observations on the banded ant-eater Myrmecobius F. faciatus Waterhouse (Marsupialia), with particular reference to its food habits. J Zool 135:183–207

    Google Scholar 

  • Caldwell JP, Vitt LJ (1999) Dietary asymmetry in leaf litter frogs and lizards in a transitional northern Amazonian rain forest. Oikos 84:383–397

    Article  Google Scholar 

  • Carlson DM, Gentry JB (1973) Effects of shading on the migratory behavior of the Florida harvester ant, Pogonomyrmex badius. Ecology 54:452–453

    Article  Google Scholar 

  • Chen Y, Hansen LD, Brown JJ (2002) Nesting sites of the carpenter ant Camponotus vicinus (Mayr) (Hymenoptera: Formicidae) in northern Idaho. Environ Entomol 31:1037–1042

    Article  Google Scholar 

  • Christy HR (1952) Vertical temperature gradients in a beech forest in central Ohio. Ohio J Sci 52:199–209

    Google Scholar 

  • Cornwell WK, Cornelissen JHC, Allison SD et al (2009) Plant traits and wood fates across the globe: rotted, burned, or consumed? Glob Chang Biol 15:2431–2449

    Article  Google Scholar 

  • Crowther TW, Maynard DS, Crowther TR et al (2012) Interactive effects of warming and invertebrate grazing on the outcomes of competitive fungal interactions. FEMS Microbiol Ecol 81:419–426

    Article  PubMed  CAS  Google Scholar 

  • De la Mora A, Philpott SM (2010) Wood-nesting ants and their parasites in forests and coffee agroecosystems. Environ Entomol 39:1473–1481

    Article  Google Scholar 

  • de Souza DR, Fernandes TT, de Olivera Nascimento JR et al (2012) Characterization of ant communities (Hymenoptera: Formicidae) in twigs in the leaf litter of the Atlantic rainforest and eucalyptus trees in the southeast region of Brazil. Psyche 2012:1–12

    Article  Google Scholar 

  • Deheer CJ, Vargo EL (2004) Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol Ecol 13:431–441

    Article  PubMed  Google Scholar 

  • Dejean A, Evraerts C (1997) Predatory behavior in the genus Leptogenys: a comparative study. J Insect Behav 10:177–191

    Article  Google Scholar 

  • Dejean A, Feneron R (1999) Predatory behaviour in the ponerine ant, Centromyrmex bequaerti: a case of termitolesty. Behav Process 47:125–133

    Article  CAS  Google Scholar 

  • Dejean A, Bolton B, Durand JL (1997) Cubitermes subarquatus termitaries as shelters for soil fauna in African rainforests. J Nat Hist 31:1289–1302

    Article  Google Scholar 

  • Deligne J, Quennedey A, Blum MS (1981) The enemies and defense mechanisms of termites. In: Hermann HR (ed) Social insects, vol II. Academic, New York, pp 2–76

    Google Scholar 

  • Eguchi K (2001) A revision of the Bornean species of the ant genus Pheidole (Insecta: Hymenoptera: Formicidae: Myrmicinae). Tropics Monogr 2:1–154

    Google Scholar 

  • Eguchi K, Yamane S (2003) Species diversity of ants (Hymenoptera: Formicidae) in a lowland rainforest, northwestern Borneo. New Entomol 52:49–59

    Google Scholar 

  • Emerson AE (1936) Termite distribution in the United States. Science 83:410–411

    Article  PubMed  CAS  Google Scholar 

  • Feener DH (1988) Effects of parasites on foraging and defense behavior of a termitophagous ant, Pheidole titanis Wheeler. Behav Ecol Sociobiol 22:421–427

    Article  Google Scholar 

  • Fernandes TT, da Silva RR, de Souza DR et al (2012) Undecomposed twigs in the leaf litter as nest-building resources for ants (Hymenoptera: Formicidae) in areas of the Atlantic forest in the southeastern region of Brazil. Psyche 2012:1–8

    Google Scholar 

  • Fernandez-Marin H, Zimmerman JK, Rehner SA, Wcislo WT (2006) Active use of the metapleural glands by ants in controlling fungal infection. Proc R Soc B 273:1689–1695

    Article  PubMed  PubMed Central  Google Scholar 

  • Foitzik S, Backus VL, Trindl A, Herbers JM (2004) Ecology of Leptothorax ants: impact of food, nest sites, and social parasites. Behav Ecol Sociobiol 55:484–493

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand Oaks, CA

    Google Scholar 

  • Franch J, Espadaler X (1988) Ants as colonizing agents in pine stumps in San Juan de la Pena (Huesca, Spain). Vie Milieu 38:149–154

    Google Scholar 

  • Francoeur A (1997) Ants (Hymenoptera: Formicidae) of the Yukon. In: Danks HV, Downes JA (eds) Insects of the Yukon. Biological survey of Canada (Terrestrial Arthropods). Ottawa, Ontario, pp 901–910

    Google Scholar 

  • Gayahan GG, Tschinkel WR (2008) Fire ants (Solenopsis invicta) dry and store insect pieces for later use. J Insect Sci 8:1–8

    Article  Google Scholar 

  • Giladi I (2004) The role of habitat-specific demography, habitat-specific dispersal, and the evolution of dispersal distances in determining current and future distributions of the ant-dispersed forest herb, Hexastylis artifolia. Ph.D. Dissertation, University of Georgia, Athens, GA, USA

    Google Scholar 

  • Gordon DM, Dektar KN, Pinter-Wollman N (2013) Harvester ant colony variation in foraging activity and response to humidity. PLoS One 8:e63363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Große C, Kaczensky P, Knauer F (2003) Ants: a food source sought by Slovenian brown bears (Ursus arctos)? Can J Zool 81:1996–2005

    Article  Google Scholar 

  • Hamilton WJ (1932) The food and feeding habits of some eastern salamanders. Copeia 1932:83–86

    Article  Google Scholar 

  • Hansen LD, Akre RD (1990) Biology of carpenter ants. In: Vander MR, Jaffe K, Cedeno A (eds) Applied myrmecology: a world perspective. Westview, Boulder, CO, pp 274–280

    Google Scholar 

  • Hansen LD, Klotz JH (2005) Carpenter ants of the United States and Canada. Comstock Publishing Associates, Ithaca, NY

    Google Scholar 

  • Hashimoto Y, Morimoto Y, Widodo ES, Mohamed M (2006) Vertical distribution pattern of ants in a Bornean tropical rainforest. Sociobiology 47:697–710

    Google Scholar 

  • Headley AE (1949) A population study of the ant Aphaenogaster fulva ssp. aquia Buckley (Hymenoptera: Formicidae). Ann Entomol Soc Am 42:265–272

    Article  Google Scholar 

  • Herbers JM (1986) Nest site limitation and facultative polygyny in the ant Leptothorax longispinosus. Behav Ecol Sociobiol 19:115–122

    Article  Google Scholar 

  • Herbers J (1989) Community structure in north temperate ants: temporal and spatial variation. Oecologia 81:201–211

    Article  PubMed  Google Scholar 

  • Higgins RJ, Lindgren BS (2006) The fine scale physical attributes of coarse woody debris and effects of surrounding stand structure on its utilization by ants (Hymenoptera: Formicidae) in British Columbia, Canada. In: Grove SJ, Hanula JL (eds) Insect biodiversity and dead wood: proceedings of a symposium for the 22nd international congress of entomology. United States Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, USA, pp 67–74

    Google Scholar 

  • Higgins RJ, Lindgren BS (2012) The effect of manipulated shading on the colony abundance of two species of ants, Formica aserva and Leptothorax muscorum, in dead wood. Entomol Exp Appl 143:292–300

    Article  Google Scholar 

  • Higgins RJ, Lindgren BS (2015) Seral changes in ant (Hymenoptera: Formicidae) assemblages in the sub-boreal forests of British Columbia. Insect Conserv Divers 8:337–347

    Article  Google Scholar 

  • Higgins RJ, Gillingham MG, Lindgren BS (2017) Critical habitat elements, with an emphasis on coarse woody debris, associated with ant presence or absence in moist cold sub-boreal forests of the interior of British Columbia. Forests 8:1–12

    Article  Google Scholar 

  • Hirai T, Matsui M (2000) Myrmecophagy in a ranid frog Rana rugosa: specialization or weak avoidance to ant eating. Zool Sci 17:459–466

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Horn S, Hanula JL (2008) Relationships on coarse woody debris to arthropod availability for red-cockaded woodpeckers and other bark-foraging birds on loblolly pine boles. J Entomol Sci 43:153–168

    Article  Google Scholar 

  • Houseman RM, Gold RE, Pawson BM (2001) Resource partitioning in two sympatric species of subterranean termites, Reticulitermes flavipes and Reticulitermes hageni (Isoptera: Rhinotermitidae). Environ Entomol 30:673–685

    Article  Google Scholar 

  • Hurlbert SH, Lombardi CM (2009) Final collapse of the Newman-Pearson decision theoretic framework and the rise of the neoFisherian. Ann Zool Fenn 46:311–349

    Article  Google Scholar 

  • Ito F (1998) Colony composition and specialized predation on millipedes in the enigmatic ponerine ant genus Problomyrmex (Hymenoptera, Formicidae). Insect Soc 45:79–83

    Article  Google Scholar 

  • Jaffe K, Ramos C, Issa S (1995) Trophic interactions between ants and termites that share common nests. Ann Entomol Soc Am 88:328–333

    Article  Google Scholar 

  • Jones JC, Oldroyd BP (2006) Nest thermoregulation in social insects. Adv Insect Phys 33:153–191

    Article  Google Scholar 

  • Kajak A, Breymeyer A, Petal J, Olechowicz E (1972) The influence of ants on the meadow invertebrates. Ekol Pol 20:163–171

    Google Scholar 

  • Kaspari M (1996) Testing resource-based models of patchiness in four neotropical litter ant assemblages. Oikos 76:443–454

    Article  Google Scholar 

  • Kaspari M, Powell S, Lattke J, O’Donnell S (2011) Predation and patchiness in the tropical litter: do swarm-raiding army ants skim the cream or drain the bottle. J Anim Ecol 80:818–823

    Article  PubMed  Google Scholar 

  • Kempf WW (1966) A synopsis of the neotropical ants of the genus Centromyrmex Mayr (Hymenoptera: Formicidae). Stud Entomol 9:401–410

    Google Scholar 

  • King JR (2010) Size-abundance relationships in Florida ant communities reveal how ants break the energetic equivalence rule. Ecol Entomol 35:287–298

    Article  Google Scholar 

  • King JR (2016) Where do social insects fit into soil food webs? Soil Biol Biochem 102:55–62

    Article  CAS  Google Scholar 

  • King JR, Warren RJ, Bradford MA (2013) Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS One 8:e75843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klotz JH, Greenberg L, Reid BL, Davis L (1998) Spatial distribution of colonies of three carpenter ants Camponotus pennsylvanicus, Camponotus floridanus, Camponotus laevigatus (Hymenoptera: Formicidae). Sociobiology 32:51–62

    Google Scholar 

  • Korb J (2007) Termites. Curr Biol 17:995–999

    Article  CAS  Google Scholar 

  • Kuriachan I, Vinson SB (2000) A queen’s worker attractiveness influences her movement in polygynous colonies of the red imported fire ant (Hymenoptera: Formicidae) in response to adverse temperature. Environ Entomol 29:943–949

    Article  Google Scholar 

  • Lampasona TP (2015) Malagasy ant Pheidole longispinosa (Forel, 1891) behavior as regionally dominant ant predator in rainforest environment (Hymenoptera: Formicidae). J Insect Behav 28:359–368

    Article  Google Scholar 

  • LaRosa PS, Brooks JP, Deych E et al (2012) Hypothesis testing and power calculations for taxonomic-based human microbiome data. PLoS One 7:e52078

    Article  CAS  Google Scholar 

  • Laskis K, Tschinkel W (2009) The seasonal natural history of the ant, Dolichoderus mariae, in northern Florida. J Insect Sci 9:1–26

    Article  Google Scholar 

  • Leal IR, Oliveira PS (1995) Behavioral ecology of the neotropical termite-hunting ant Pachycondyla (=Termitopone) marginata: colony founding, group-raiding and migratory patterns. Behav Ecol Sociobiol 37:373–383

    Article  Google Scholar 

  • Lemaire M, Nagnan P, Clement J-L et al (1990) Geranyllinalool (diterpene alcohol) an insecticidal component of pine wood and termites (Isoptera: Rhinotermitidae) in four European ecosystems. J Chem Ecol 16:2067–2079

    Article  PubMed  CAS  Google Scholar 

  • Lemperiere G, Marage D (2010) The influence of forest management and habitat on insect communities associated with dead wood: a case study in forests of the southern French Alps. Insect Conserv Divers 3:236–245

    Google Scholar 

  • Levieux J (1966) Note preliminaire sur les colonnes de chasse de Megaponera foetens F. (Hymenoptere Formicidae). Insect Soc 13:117–126

    Article  Google Scholar 

  • Levieux J (1972) Le role des fourmis dans les reseaux trophiques d’une savanae preforestier de Cote d’Ivoire. Ann l’Universie d’Abidjan Ser E 5:143–240

    Google Scholar 

  • Levings SC, Franks NR (1982) Patterns of nested dispersion in a tropical ground ant community. Ecology 63:338–344

    Article  Google Scholar 

  • Levings SC, Traniello JFA (1981) Territoriality, nest dispersion, and community structure in ants. Psyche 88:265–321

    Article  Google Scholar 

  • Lindenmayer DB, Burton PJ, Franklin JF (2012) Salvage logging and its ecological consequences. Island Press, Washington, DC

    Google Scholar 

  • Lindgren BS, MacIsaac AM (2002) A preliminary study of ant diversity and ant dependence on dead wood in central interior British Columbia. USDA Forest Service General Technical Report PSW-GTR-181, pp 111–119

    Google Scholar 

  • Longhurst C, Johnson RA, Wood TG (1978) Predation by Megaponera foetens (Fabr.) (Hymenoptera: Formicidae) on termites in the Nigerian southern Guinea Savanna. Oecologia 32:101–107

    Article  PubMed  CAS  Google Scholar 

  • Longhurst C, Johnson RA, Wood TG (1979) Foraging, recruitment and predation by Decamorium uelense (Sanstchi) (Formicidae: Myrmicinae) on termites in southern Guinea Savanna, Nigeria. Oecologia 38:83–91

    Article  PubMed  CAS  Google Scholar 

  • Longino JT, Nadkarni NM (1990) A comparison of ground and canopy leaf litter ants (Hymenoptera: Formicidae) in a neotropical montane forest. Psyche 97:81–93

    Article  Google Scholar 

  • Lubertazzi D (2012) The biology and natural history of Aphaenogaster rudis. Psyche 2012:1–11

    Article  Google Scholar 

  • Luke SH, Fayle TM, Eggleton P et al (2014) Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers Conserv 23:2817–2832

    Article  Google Scholar 

  • Lynch JF (1981) Seasonal, successional and vertical segregation in a Maryland ant community. Oikos 37:183–198

    Article  Google Scholar 

  • Mahli Y (2002) Carbon in the atmosphere and terrestrial biosphere in the 21st century. Philos Trans A Math Phys Eng Sci 360:2925–2945

    Article  Google Scholar 

  • Majer JD, Brennan KEC, Moir ML (2007) Invertebrates and the restoration of a forest ecosystem: 30 years of research following bauxite mining in Western Australia. Restor Ecol 15:S104–S115

    Article  Google Scholar 

  • Masuko K (1994) Specialized predation on oribatid mites by two species of the ant genus Myrmecina (Hymenoptera: Formicidae). Psyche 101:159–173

    Article  Google Scholar 

  • Mattson DJ (2001) Myrmecophagy by Yellowstone grizzly bears. Can J Zool 79:779–793

    Article  Google Scholar 

  • Maynard DS, Crowther TW, King JR et al (2015) Temperate forest termites: ecology, biogeography, and ecosystem impacts. Ecol Entomol 40:199–210

    Article  Google Scholar 

  • Maynard DS, Crowther TW, Bradford MA (2017) Fungal interactions reduce carbon use efficiency. Ecol Lett 20:1034–1042

    Article  PubMed  Google Scholar 

  • McGlynn TP, Carr RA, Carson JH, Buma J (2004) Frequent nest relocation in the ant Aphaenogaster araneoides: resources, competition, and natural enemies. Oikos 106:611–621

    Article  Google Scholar 

  • McGlynn TP, Dunn T, Wayman E, Romero A (2010) A thermophile in the shade: light-directed nest relocation in the Costa Rican ant Ectatomma ruidum. J Trop Ecol 26:559–562

    Article  Google Scholar 

  • Mertl AL, Traniello JFA, Wilkie KR, Constantino R (2012) Associations of two ecologically significant social insect taxa in the litter of an Amazonian rainforest: is there a relationship between ant and termite species richness? Psyche 2012:1–12

    Article  Google Scholar 

  • Miller LR (1994) Nests and queen migration in Schedorhinotermes actuosus (Hill), Schedorhinotermes breinli (Hill) and Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae). Aust J Entomol 33:317–318

    Article  Google Scholar 

  • Miyata H, Shimamura T, Hirosawa H, Higashi S (2003) Morphology and phenology of the primitive ponerine ant Onychomyrmex hedleyi (Hymenoptera: Formicidae: Ponerinae) in a highland rainforest of Australia. J Nat Hist 37:115–125

    Article  Google Scholar 

  • Moseley KR, Castleberry SB, Hanula JL, Ford WM (2005) Diet of southern toads (Bufo terrestris) in loblolly pine (Pinus taeda) stands subject to coarse woody debris management. Am Midl Nat 153:327–337

    Article  Google Scholar 

  • Moyano M, Feener DH (2014) Nest relocation in the ant Pheidole dentata. Insect Soc 61:71–81

    Article  Google Scholar 

  • Nakano MA, Feitosa RM, Moraes CO et al (2012) Assembly of Myrmelachista Roger (Formicidae: Formicinae) in twigs fallen on the leaf litter of Brazilian Atlantic forest. J Nat Hist 46:33–34

    Article  Google Scholar 

  • Ness JH, Morin DF, Giladi I (2009) Uncommon specialization in a mutualism between a temperate herbaceous plant guild and an ant: are Aphaenogaster ants keystone mutualists? Oikos 12:1793–1804

    Article  Google Scholar 

  • Neupane A, Maynard DS, Bradford MA (2015) Consistent effects of eastern subterranean termites (Reticulitermes flavipes) on properties of a temperate forest soil. Soil Biol Biochem 91:84–91

    Article  CAS  Google Scholar 

  • Oberst S, Bann G, Lai JCS, Evans TA (2017) Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps. Ecol Lett 20:212–221

    Article  PubMed  Google Scholar 

  • Ofer J (1970) Polyrhachis simplex the weaver ant of Israel. Insect Soc 17:49–82

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  PubMed  CAS  Google Scholar 

  • Parr CL, Eggleton P, Davies AB et al (2016) Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes. Ecology 97:1611–1617

    Article  PubMed  CAS  Google Scholar 

  • Penick CA, Tschinkel WR (2008) Thermoregulatory brood transport in the fire ant, Solenopsis invicta. Insect Soc 55:176–182

    Article  Google Scholar 

  • Petal J (1978) The role of ants in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 293–325

    Google Scholar 

  • Powell S (2009) How ecology shapes caste evolution: linking resource use, performance and fitness in a superorganism. J Evol Biol 22:1004–1013

    Article  PubMed  CAS  Google Scholar 

  • Pranschke AM, Hooper-Bùi LM (2003) Influence of abiotic factors on red imported fire ant (Hymenoptera: Formicidae) mound population ratings in Louisiana. Environ Entomol 32:204–207

    Article  Google Scholar 

  • Pyle C, Brown MM (1998) A rapid system of decay classification for hardwood logs of the eastern deciduous forest floor. J Torrey Bot Soc 125:237–245

    Article  Google Scholar 

  • Raimundo RL, Freitas AVL, Oliveira PS (2009) Seasonal patterns in activity rhythm and foraging ecology in the neotropical forest-dwelling ant, Odontomachus chelifer (Formicidae: Ponerinae). Ann Entomol Soc Am 102:1151–1157

    Article  Google Scholar 

  • Raley CM, Aubry KB (2006) Foraging ecology of pileated woodpeckers in coastal forests of Washington. J Wildl Manag 70:1266–1275

    Article  Google Scholar 

  • Redford KH (1987) Ants and termites as food. In: Genoways HH (ed) Current mammalogy. Springer, Boston, MA, pp 349–399

    Chapter  Google Scholar 

  • Roberts DW, Humber RA (1981) Entomogenous fungi. In: Cole GT, Kendrick B (eds) Biology of conidial fungi. Academic, New York, NY, pp 201–236

    Chapter  Google Scholar 

  • Roces F, Nunez JA (1989) Brood translocation and circadian variation of temperature preference in the ant Camponotus mus. Oecologia 81:33–37

    Article  PubMed  Google Scholar 

  • Ryti RT, Case TJ (1992) The role of neighborhood competition in the spacing and diversity of ant communities. Am Nat 139:355–374

    Article  Google Scholar 

  • Sagata K, Mack AL, Wright DD, Lester PJ (2010) The influence of nest availability on the abundance of twig-dwelling ants in a Papua New Guinea forest. Insect Soc 57:333–341

    Article  Google Scholar 

  • Sheppe W (1970) Invertebrate predation on termites. Insect Soc 17:205–218

    Article  Google Scholar 

  • Smallwood J (1982a) Nest relocation in ants. Insect Soc 29:138–147

    Article  Google Scholar 

  • Smallwood J (1982b) The effect of shade and competition on emigration rate in the ant Aphaenogaster rudis. Ecology 63:124–134

    Article  Google Scholar 

  • Smallwood J, Culver DC (1979) Colony movements of some North American ants. J Anim Ecol 48:373–382

    Article  Google Scholar 

  • Snyder LE, Herbers JM (1991) Polydomy and sexual allocation ratios in the ant Myrmica punctiventris. Behav Ecol Sociobiol 28:409–415

    Article  Google Scholar 

  • Steinmetz R, Garshelis DL, Chutipong W, Seuaturien N (2011) The shared preference niche of sympatric Asiatic black bears and sun bears in a tropical forest mosaic. PLoS One 6:e14509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stradling DJ (1978) Food and feeding habits of ants. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 81–106

    Google Scholar 

  • Swenson JE, Jansson A, Riig R, Sandegren F (1999) Bears and ants: myrmecophagy by brown bears in central Scandinavia. Can J Zool 77:551–561

    Article  Google Scholar 

  • Talbot M (1951) Populations and hibernating conditions of the ant Aphaenogaster (Attomyrma) rudis Emery (Hymenoptera: Formicidae). Ann Entomol Soc Am 44:302–307

    Article  Google Scholar 

  • Team RDC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Thorne BL, Traniello JFA, Adams ES, Bulmer MS (1999) Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera: Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol Ecol Evol 11:149–169

    Article  Google Scholar 

  • Torgersen TR, Bull EL (1995) Down logs as habitat for forest-dwelling ants: the primary prey of pileated woodpeckers in Northeastern Oregon. Northwest Sci 69:294–303

    Google Scholar 

  • Traniello JFA (1981) Enemy deterrence in the recruitment strategy of a termite: soldier-organized foraging in Nasutitermes costalis. Proc Natl Acad Sci U S A 78:1976–1979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tranter C, Graystock P, Shaw C et al (2014) Sanitizing the fortress: protection of ant brood and nest material by worker antibiotics. Behav Ecol Sociobiol 68:499–507

    Article  Google Scholar 

  • Tschinkel WR (2006) The fire ants. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Tschinkel WR (2014) Nest relocation and excavation in the Florida harvester ant, Pogonomyrmex badius. PLoS One 9:e112981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tschinkel WR (2015) The architecture of subterranean ant nests: beauty and mystery underfoot. J Bioecon 17:271–291

    Article  Google Scholar 

  • Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85

    Article  PubMed  Google Scholar 

  • Ulyshen MD, Hanula JL (2009) Litter-dwelling arthropod abundance peaks near coarse woody debris in loblolly pine forests of the southeastern United States. Fla Entomol 92:163–164

    Article  Google Scholar 

  • Umphrey GJ (1996) Morphometric discrimination among sibling species in the fulva-rudis-texana complex of the ant genus Aphaenogaster (Hymenoptera: Formicidae). Can J Zool 74:528–559

    Article  Google Scholar 

  • Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403

    Article  PubMed  CAS  Google Scholar 

  • Ward PS, Blaimer BB, Fisher BL (2016) A revised phylogenetic classification of the ant subfamily Formicinae (Hymenoptera: Formicidae), with resurrection of the genera Colobopsis and Dinomyrmex. Zootaxa 4072:343–357

    Article  PubMed  Google Scholar 

  • Warren RJ (2010) An experimental test of well-described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers. New Phytol 185:1038–1049

    Article  PubMed  Google Scholar 

  • Warren RJ, Bradford MA (2011) The shape of things to come: woodland herb niche contraction begins during recruitment in mesic forest microhabitat. Proc R Soc B 278:1390–1398

    Article  PubMed  Google Scholar 

  • Warren RJ, Bradford MA (2012) Ant colonization and coarse woody debris decomposition in temperate forests. Insect Soc 59:215–221

    Article  Google Scholar 

  • Warren RJ, Giladi I, Bradford MA (2010) Ant-mediated seed dispersal does not facilitate niche expansion. J Ecol 98:1178–1185

    Article  Google Scholar 

  • Warren RJ, Giladi I, Bradford MA (2012) Environmental heterogeneity and interspecific interactions influence occupancy be key seed-dispersing ants. Environ Entomol 41:463–468

    Article  PubMed  Google Scholar 

  • Watt AD, Stork NE, Bolton B (2002) The diversity and abundance of ants in relation to forest disturbance and plantation establishment in southern Cameroon. J Appl Ecol 39:18–30

    Article  Google Scholar 

  • Weber NA (1949) New ponerine ants from equatorial Africa. Am Mus Novit 1398:1–9

    Google Scholar 

  • Weedon JT, Cornwell WK, Cornelissen JHC et al (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56

    Article  PubMed  Google Scholar 

  • Wheeler WH (1936) Ecological relations of Ponerine and other ants to termites. Proc Am Acad Arts Sci 71:159–243

    Article  Google Scholar 

  • Wilson EO (1959) Some ecological characteristics of ants in New Guinea rain forests. Ecology 40:437–447

    Article  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Wilson EO (2003) Pheidole in the New World: a dominant, hyperdiverse ant genus. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Wilson EO (2005) Oribatid mite predation by small ants of the genus Pheidole. Insect Soc 52:263–265

    Article  Google Scholar 

  • Wilson EO, Brown WL (1984) Behavior of the cryptobiotic predaceous ant Eurhopalothrix heliscata n. sp. (Hymenoptera: Formicidae: Basicerotini). Insect Soc 31:408–428

    Article  Google Scholar 

  • Wilson EO, Holldobler B (1986) Ecology and behavior of the neotropical cryptobiotic ant Basiceros manni (Hymenoptera: Formicidae: Basicerotini). Insect Soc 33:70–84

    Article  Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 245–292

    Google Scholar 

  • Yusuf AA, Gordon I, Crewe RM, Pirk CWW (2014) Prey choice and raiding behaviour of the ponerine ant Pachycondyla analis (Hymenoptera: Formicidae). J Nat Hist 48:345–358

    Article  Google Scholar 

  • Zelikova TJ, Dunn RR, Sanders NJ (2008) Variation in seed dispersal along an elevational gradient in Great Smoky Mountains National Park. Acta Oecol 34:155–162

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ella Bradford, Ben Gochnour, Lindsay Gustafson, Sarah Huber, Mary Schultz, and Anna Wade for field and lab assistance. This is the Termite Ecology And Myrmecology (TEAM) working group publication number 3. Research was supported by US National Science Foundation grants to M.A.B. (DEB-1021098), J.R.K. (DEB-1020415) and the Coweeta LTER Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua R. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

King, J.R., Warren, R.J., Maynard, D.S., Bradford, M.A. (2018). Ants: Ecology and Impacts in Dead Wood. In: Ulyshen, M. (eds) Saproxylic Insects. Zoological Monographs, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75937-1_8

Download citation

Publish with us

Policies and ethics