Skip to main content

Dispersal of Saproxylic Insects

  • Chapter
  • First Online:
Book cover Saproxylic Insects

Part of the book series: Zoological Monographs ((ZM,volume 1))

Abstract

Dispersal is a key trait of species that is required to maintain gene flow between habitat patches. Furthermore, it allows the colonization of new habitats and thus affects population dynamics, extinction risk of populations, and species distributions. Dispersal enables species to persist in a changing environment. Saproxylic insects, depending on deadwood at some stage during their life cycle, must compensate local extinctions resulting from the decay of deadwood with colonizations of new deadwood structures locally and on the landscape scale. Their dispersal strategies are shaped by a suite of driving forces such as spatial and temporal variability of deadwood structures in the environment, feeding strategy, resource competition, kin competition, and inbreeding avoidance. The importance of each factor in selecting for a dispersal strategy will vary among species depending on their life history and interactions with the environment, such as the longevity of the deadwood habitat used. Species using a more transient habitat, such as freshly killed wood, have better dispersal abilities than those in more persistent habitats such as tree hollows that may exist for several decades. Dispersal abilities of only a few saproxylic insect species are known, and these comprise mostly pest species or flagship species of interest to conservation. Dispersal distances vary greatly from a few meters in passalids dispersing by walking to over 100 km in some flying bark beetles. Knowledge of dispersal abilities is of paramount importance though, as it can help to improve conservation strategies and forest management especially in terms of spatial distribution of suitable habitats to enhance species persistence. In this chapter we first review the factors driving dispersal ability and our current knowledge on dispersal distances of saproxylic insects. We provide an overview of different methods used to measure dispersal ability of saproxylic species. We discuss whether saproxylic species are rather dispersal or habitat limited and identify open questions in the study of dispersal of saproxylic insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbulut S, Linit MJ (1999) Flight performance of Monochamus carolinensis (Coleoptera: Cerambycidae) with respect to nematode phoresis and beetle characteristics. Environ Entomol 28:1014–1020

    Article  Google Scholar 

  • Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations. Wiley-Blackwell, Chichester

    Google Scholar 

  • Angelo MJ, Slansky F (1984) Body building by insects—trade-offs in resource-allocation with particular reference to migratory species. Fla Entomol 67:22–41

    Article  Google Scholar 

  • Barak AV, McGrevy D, Tokaya G (2000) Dispersal and recapture of marked, overwintering Tomicus piniperda (Coleoptera: Scolytidae). Great Lakes Entomol 33:69–80

    Google Scholar 

  • Benton TG, Bowler DE (2012) Dispersal in invertebrates: influences on individual decisions. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 41–49

    Chapter  Google Scholar 

  • Bergman KO, Jansson N, Claesson K, Palmer MW, Milberg P (2012) How much and at what scale? Multiscale analyses as decision support for conservation of saproxylic oak beetles. For Ecol Manag 265:133–141

    Article  Google Scholar 

  • Berwaerts K, Van Dyck H, Aerts P (2002) Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Funct Ecol 16:484–491

    Article  Google Scholar 

  • Biedermann PHW, Taborsky M (2011) Larval helpers and age polyethism in ambrosia beetles. Proc Natl Acad Sci U S A 108:17064–17069

    Article  PubMed  PubMed Central  Google Scholar 

  • Blouin SF, Blouin M (1988) Inbreeding avoidance behaviors. Trends Ecol Evol 3:230–233

    Article  PubMed  CAS  Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouk V, Mathysen E, Mustin K, Saastamoinen M, Schtickzelle N, Stevens VM, Vandewoestijne S, Baguette M, Barton K, Benton TG, Chaput-Bardy A, Clobert J, Dytham C, Hovestadt T, Meier CM, Palmer SCF, Turlure C, Travis JMJ (2012) Costs of dispersal. Biol Rev 87:290–312

    Article  PubMed  Google Scholar 

  • Borden JH, Bennett RB (1969) A continously recording flight mill for investigating effect of volatile substances on flight of tethered insects. J Econ Entomol 62:782–785

    Article  Google Scholar 

  • Botterweg PF (1982) Dispersal and flight behavior of the spruce bark beetle Ips typographus in relation to sex, size and fat-content. Z Angew Entomol 94:466–489

    Article  Google Scholar 

  • Bouget C, Brin A, Tellez D, Archaux F (2015) Intraspecific variations in dispersal ability of saproxylic beetles in fragmented forest patches. Oecologia 177:911–920

    Article  PubMed  CAS  Google Scholar 

  • Boulanger Y, Sirois L, Hebert C (2010) Distribution of saproxylic beetles in a recently burnt landscape of the northern boreal forest of Quebec. For Ecol Manag 260:1114–1123

    Article  Google Scholar 

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225

    Article  PubMed  Google Scholar 

  • Branquart E, Hemptinne JL (2000) Selectivity in the exploitation of floral resources by hoverflies (Diptera : Syrphinae). Ecography 23:732–742

    Article  Google Scholar 

  • Brin A, Valladares L, Ladet S, Bouget C (2016) Effects of forest continuity on flying saproxylic beetle assemblages in small woodlots embedded in agricultural landscapes. Biodivers Conserv 25:587–602

    Article  Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Brunet J, Isacsson G (2009) Restoration of beech forest for saproxylic beetles-effects of habitat fragmentation and substrate density on species diversity and distribution. Biodivers Conserv 18:2387–2404

    Article  Google Scholar 

  • Buse J (2012) “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J Insect Conserv 16:93–102

    Article  Google Scholar 

  • Chase KD, Kelly D, Liebhold AM, Bader MKF, Brockerhoff EG (2017) Long-distance dispersal of non-native pine bark beetles from host resources. Ecol Entomol 42:173–183

    Article  Google Scholar 

  • Chiari S, Carpaneto GM, Zauli A, Zirpoli GM, Audisio P, Ranius T (2013) Dispersal patterns of a saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Insect Conserv Divers 6:309–318

    Article  Google Scholar 

  • Clobert J, Le Galliard JF, Cote J, Le Galliard JF, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209

    Article  PubMed  Google Scholar 

  • Compton SG (2002) Sailing with the wind: dispersal by small flying insects. In: Bullock JM, Kenward RE, Hails RS (eds) Dispersal ecology. Blackwell Science, Oxford, pp 113–133

    Google Scholar 

  • Cronin JT, Turchin P, Hayes JL, Steiner CA (1999) Area-wide efficacy of a localized forest pest management practice. Environ Entomol 28:496–504

    Article  Google Scholar 

  • Cronin JT, Reeve JD, Wilkens R, Turchin P (2000) The pattern and range of movement of a checkered beetle predator relative to its bark beetle prey. Oikos 90:127–138

    Article  Google Scholar 

  • David G, Giffard B, Piou D, Jactel H (2014) Dispersal capacity of Monochamus galloprovincialis, the European vector of the pine wood nematode, on flight mills. J Appl Entomol 138:566–576

    Article  Google Scholar 

  • Denno RF, Roderick GK, Peterson MA, Huberty AF, Döbel HG, Eubanks MD, Losey JE, Langellotto GA (1996) Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers. Ecol Monogr 66:389–408

    Article  Google Scholar 

  • Dolezal P, Okrouhlik J, Davidkova M (2016) Fine fluorescent powder marking study of dispersal in the spruce bark beetle, Ips typographus (Coleoptera: Scolytidae). Eur J Entomol 113:1–8

    Article  Google Scholar 

  • Drag L, Hauck D, Pokluda P, Zimmermann K, Cizek L (2011) Demography and dispersal ability of a threatened saproxylic beetle: a mark-recapture study of the Rosalia longicorn (Rosalia alpina). PLoS One 6:e21345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drag L, Hauck D, Berces S, Michalcewicz J, Seric Jelaska L, Aurenhammer S, Cizek L (2015) Genetic differentiation of populations of the threatened saproxylic beetle Rosalia longicorn, Rosalia alpina (Coleoptera: Cerambycidae) in central and south-east Europe. Biol J Linn Soc 116:911–925

    Article  Google Scholar 

  • Dubois G, Vignon V (2008) First results of radio-tracking of Osmoderma eremita (Coleoptera: Cetoniidae) in French chestnut orchards. Rev Ecol Terre Vie:131–138

    Google Scholar 

  • Dubois GF, Le Gouar PJ, Delettre YR, Brustel H, Vernon P (2010) Sex-biased and body condition dependent dispersal capacity in the endangered saproxylic beetle Osmoderma eremita (Coleoptera: Cetoniidae). J Insect Conserv 14:679–687

    Article  Google Scholar 

  • Epperson BK (2005) Estimating dispersal from short distance spatial autocorrelation. Heredity 95:7–15

    Article  PubMed  CAS  Google Scholar 

  • Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040

    Article  PubMed  Google Scholar 

  • Etxebeste I, Sanchez-Husillos E, Alvarez G, Gisbert MI, Pajares J (2016) Dispersal of Monochamus galloprovincialis (Col.: Cerambycidae) as recorded by mark-release-recapture using pheromone traps. J Appl Entomol 140:485–499

    Article  CAS  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59

    Article  Google Scholar 

  • Fahrner SJ, Lelito JP, Aukema BH (2015) The influence of temperature on the flight capacity of emerald ash borer Agrilus planipennis and its parasitoid, Tetrastichus planipennisi: implications to biological control. BioControl 60:437–449

    Article  Google Scholar 

  • Fayt P, Dufrene M, Branquart E, Hastir P, Pontegenie C, Henin JM, Versteirt V (2006) Contrasting responses of saproxylic insects to focal habitat resources: the example of longhorn beetles and hoverflies in Belgian deciduous forests. J Insect Conserv 10:129–150

    Article  Google Scholar 

  • Fielding NJ, Okeefe T, King CJ (1991) Dispersal and host-finding capability of the predatory beetle Rhizophagus grandis Gyll (Col., Rhizophagidae). J Appl Entomol 112:89–98

    Article  Google Scholar 

  • Flensted KK, Bruun HH, Ejrnaes R, Eskildsen A, Thomsen PF, Heilmann-Clausen J (2016) Red-listed species and forest continuity—a multi-taxon approach to conservation in temperate forests. For Ecol Manag 378:144–159

    Article  Google Scholar 

  • Forsse E, Solbreck C (1985) Migration in the bark beetle Ips typographus L—duration, timing and height of flight. Z Angew Entomol 100:47–57

    Article  Google Scholar 

  • Galindo-Cardona A, Giray T, Sabat AM, Reyes-Castillo P (2007) Bess beetle (Coleoptera : Passalidae): substrate availability, dispersal, and distribution in a subtropical wet forest. Ann Entomol Soc Am 100:711–720

    Article  Google Scholar 

  • Gall LF (1984) The effects of capturing and marking on subsequent activity in Boloria acrocnema (Lepidoptera, Nymphalidae), with a comparison of different numerical models that estimate population size. Biol Conserv 28:139–154

    Article  Google Scholar 

  • Gibb H, Hjalten J, Ball JP, Atlegrim O, Petterson RB, Hilszezanski J, Johansson T, Danell K (2006) Wing loading and habitat selection in forest beetles: are red-listed species poorer dispersers or more habitat-specific than common congenerics? Biol Conserv 132:250–260

    Article  Google Scholar 

  • Gossner M, Engel K, Jessel B (2008) Plant and arthropod communities in young oak stands: are they determined by site history? Biodivers Conserv 17:3165–3180

    Article  Google Scholar 

  • Gotelli NJ (1991) Metapopulation models—the rescue effect, the propagule rain, and the core-satellite hypothesis. Am Nat 138:768–776

    Article  Google Scholar 

  • Grove SJ (2002a) The influence of forest management history on the integrity of the saproxylic beetle fauna in an Australian lowland tropical rainforest. Biol Conserv 104:149–171

    Article  Google Scholar 

  • Grove SJ (2002b) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23

    Article  Google Scholar 

  • Hanks LM (1999) Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu Rev Entomol 44:483–505

    Article  PubMed  CAS  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conserv Biol 16:666–673

    Article  Google Scholar 

  • Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75:747–762

    Article  Google Scholar 

  • Hedin J, Ranius T (2002) Using radio telemetry to study dispersal of the beetle Osmoderma eremita, an inhabitant of tree hollows. Comput Electron Agric 35:171–180

    Article  Google Scholar 

  • Hedin J, Ranius T, Nilsson SG, Smith HG (2008) Restricted dispersal in a flying beetle assessed by telemetry. Biodivers Conserv 17:675–684

    Article  Google Scholar 

  • Heidinger IMM, Poethke HJ, Bonte D, Hein S (2009) The effect of translocation on movement behaviour—a test of the assumptions of behavioural studies. Behav Process 82:12–17

    Article  Google Scholar 

  • Heikkala O, Martikainen P, Kouki J (2017) Prescribed burning is an effective and quick method to conserve rare pyrophilous forest-dwelling flat bugs. Insect Conserv Divers 10:32–41

    Article  Google Scholar 

  • Henter HJ (2003) Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa. Evolution 57:1793–1803

    Article  PubMed  Google Scholar 

  • Herrault PA, Larrieu L, Cordier S, Gimmi U, Lachat T, Ouin A, Sarthou JP, Sheeren D (2016) Combined effects of area, connectivity, history and structural heterogeneity of woodlands on the species richness of hoverflies (Diptera: Syrphidae). Landsc Ecol 31:877–893

    Article  Google Scholar 

  • Horak J, Vodka S, Pavlicek J, Boza P (2013) Unexpected visitors: flightless beetles in window traps. J Insect Conserv 17:441–449

    Article  Google Scholar 

  • Irmler U, Arp H, Notzold R (2010) Species richness of saproxylic beetles in woodlands is affected by dispersion ability of species, age and stand size. J Insect Conserv 14:227–235

    Article  Google Scholar 

  • Jackson HB, Baum KA, Robert T, Cronin JT (2009) Habitat-specific movement and edge-mediated behavior of the saproxylic insect Odontotaenius disjunctus (Coleoptera: Passalidae). Environ Entomol 38:1411–1422

    Article  PubMed  Google Scholar 

  • Jackson HB, Baum KA, Cronin JT (2012) From logs to landscapes: determining the scale of ecological processes affecting the incidence of a saproxylic beetle. Ecol Entomol 37:233–243

    Article  Google Scholar 

  • Jactel H (1993) Individual variability of the flight potential of Ips sexdentatus Boern (Coleoptera, Scolytidae) in relation to day of emergence, sex, size, and lipid-content. Can Entomol 125:919–930

    Article  Google Scholar 

  • Jactel H, Gaillard J (1991) A preliminary study of the dispersal potential of Ips sexdentatus (Boern) (Col., Scolytidae) with an automatically recording flight mill. J Appl Entomol Z Angew Entomol 112:138–145

    Article  Google Scholar 

  • Janssen P, Cateau E, Fuhr M, Nusillard B, Brustel H, Bouget C (2016) Are biodiversity patterns of saproxylic beetles shaped by habitat limitation or dispersal limitation? A case study in unfragmented montane forests. Biodivers Conserv 25:1167–1185

    Article  Google Scholar 

  • Jansson N, Ranius T, Larsson A, Milberg P (2009) Boxes mimicking tree hollows can help conservation of saproxylic beetles. Biodivers Conserv 18:3891–3908

    Article  Google Scholar 

  • Jonsell M, Nordlander G, Jonsson M (1999) Colonization patterns of insects breeding in wood-decaying fungi. J Insect Conserv 3:145–161

    Article  Google Scholar 

  • Jonsell M, Schroeder M, Larsson T (2003) The saproxylic beetle Bolitophagus reticulatus: its frequency in managed forests, attraction to volatiles and flight period. Ecography 26:421–428

    Article  Google Scholar 

  • Jonsson M (2003) Colonisation ability of the threatened tenebrionid beetle Oplocephala haemorrhoidalis and its common relative Bolitophagus reticulatus. Ecol Entomol 28:159–167

    Article  Google Scholar 

  • Jonsson M, Nordlander G (2006) Insect colonisation of fruiting bodies of the wood-decaying fungus Fomitopsis pinicola at different distances from an old-growth forest. Biodivers Conserv 15:295–309

    Article  Google Scholar 

  • Jonsson M, Johannesen J, Seitz A (2003) Comparative genetic structure of the threatened tenebrionid beetle Oplocephala haemorrhoidalis and its common relative Bolitophagus reticulatus. J Insect Conserv 7:111–124

    Article  Google Scholar 

  • Kadowaki K, Leschen RAB, Beggs JR (2011) Competition-colonization dynamics of spore-feeding beetles on the long-lived bracket fungi Ganoderma in New Zealand native forest. Oikos 120:776–786

    Article  Google Scholar 

  • Karpinski L, Rutkowski T, Szczepanski WT (2017) First record of phoresy of Dendrochernes cyrneus (L. Koch, 1873) (Pseudoscorpiones, Chernetidae) on Cerambyx cerdo Linnaeus, 1758 (Coleoptera, Cerambycidae) and their potential value as bioindicators. Anim Biodivers Conserv 40:187–192

    Google Scholar 

  • Katlav A, Hajiqanbar H, Talebi AA (2014) First record of the genus Acanthomastix Mahunka, 1972 (Acari: Dolichocybidae) from Asia, with the description of a new species. Int J Acarol 40:7–14

    Article  Google Scholar 

  • Keller L, Peer K, Bernasconi C, Taborsky M, Shuker DM (2011) Inbreeding and selection on sex ratio in the bark beetle Xylosandrus germanus. BMC Evol Biol 11

    Google Scholar 

  • Kettunen J, Kobro S, Martikainen P (2005) Thrips (Thysanoptera) from dead aspen (Populus tremula) trees in eastern Finland. Entomol Fenn 16:246–250

    Google Scholar 

  • Kirkendall LR (1983) The evolution of mating systems in bark and ambrosia beetles (Coleoptera, Scolytidae and Platypodidae). Zool J Linn Soc Lond 77:293–352

    Article  Google Scholar 

  • Kirkendall LR, Biedermann PHW, Jordal BH (2015) Evolution and diversity of bark and ambrosia beetles. In: Vega FE, Hofstetter RW (eds) Bark beetles—biology and ecology of native and invasive species. Academic, London, pp 85–156

    Google Scholar 

  • Kissling WD, Pattemore DE, Hagen M (2014) Challenges and prospects in the telemetry of insects. Biol Rev 89:511–530

    Article  Google Scholar 

  • Knutsen H, Rukke BA, Jorde PE, Ims RA (2000) Genetic differentiation among populations of the beetle Bolitophagus reticulatus (Coleoptera: Tenebrionidae) in a fragmented and a continuous landscape. Heredity 84:667–676

    Article  PubMed  CAS  Google Scholar 

  • Korb J, Schmidinger S (2004) Help or disperse? Cooperation in termites influenced by food conditions. Behav Ecol Sociobiol 56:89–95

    Article  Google Scholar 

  • Kouki J, Hyvarinen E, Lappalainen H, Martikainen P, Similä M (2012) Landscape context affects the success of habitat restoration: large-scale colonization patterns of saproxylic and fire-associated species in boreal forests. Divers Distrib 18:348–355

    Article  Google Scholar 

  • Kuussaari M, Nieminen M, Hanski I (1996) An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J Anim Ecol 65:791–801

    Article  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  PubMed  Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics—design, analysis, and application. Blackwell, Oxford

    Google Scholar 

  • Marden JH (2000) Variability in the size, composition, and function of insect flight muscles. Annu Rev Physiol 62:157–178

    Article  PubMed  CAS  Google Scholar 

  • Matthysen E (2012) Multicausality of dispersal: a review. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 3–18

    Chapter  Google Scholar 

  • Messenger MT, Mullins AJ (2005) New flight distance recorded for Coptotermes formosanus (Isoptera: Rhinotermitidae). Fla Entomol 88:99–100

    Article  Google Scholar 

  • Meurisse N, Pawson S (2017) Quantifying dispersal of a non-aggressive saprophytic bark beetle. PLoS One 12:e0174111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore A, Barahona DC, Lehman KA, Skabeikis D, Iriarte IR, Jang EB, Siderhurst MS (2017) Judas beetles: discovering cryptic breeding sites by radio-tracking coconut rhinoceros beetles, Oryctes rhinoceros (Coleoptera: Scarabaeidae). Environ Entomol 46:92–99

    PubMed  Google Scholar 

  • Mullins AJ, Messenger MT, Hochmair HH, Tonini F, Su NY, Riegel C (2015) Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Entomol 108:707–719

    Article  PubMed  Google Scholar 

  • Nilssen AC (1984) Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera, Scolytidae and Curculionidae) in northern Finland. Ann Entomol Fenn 50:37–42

    Google Scholar 

  • Nilsson SG, Baranowski R (1997) Habitat predictability and the occurrence of wood beetles in old-growth beech forests. Ecography 20:491–498

    Article  Google Scholar 

  • Nordén B, Götmark F, Tönnberg M, Ryberg M (2004) Dead wood in semi-natural temperate broadleaved woodland: contribution of coarse and fine dead wood, attached dead wood and stumps. For Ecol Manag 194:235–248

    Article  Google Scholar 

  • Nordén B, Dahlberg A, Brandrud TE, Fritz Ö, Ejrnaes R, Ovaskainen O (2014) Effects of ecological continuity on species richness and composition in forests and woodlands: a review. Ecoscience 21:34–45

    Article  Google Scholar 

  • Oleksa A (2014) Weak isolation by distance in Diaperis boleti, a fungivorous saproxylic beetle. J Insect Sci 14

    Google Scholar 

  • Oleksa A, Chybicki IJ, Gawronski R, Svensson GP, Burczyk J (2013) Isolation by distance in saproxylic beetles may increase with niche specialization. J Insect Conserv 17:219–233

    Article  Google Scholar 

  • Oleksa A, Chybicki IJ, Larsson MC, Svensson GP, Gawronski R (2015) Rural avenues as dispersal corridors for the vulnerable saproxylic beetle Elater ferrugineus in a fragmented agricultural landscape. J Insect Conserv 19:567–580

    Article  Google Scholar 

  • Peer K, Taborsky M (2005) Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. Evolution 59:317–323

    Article  PubMed  Google Scholar 

  • Peer K, Taborsky M (2007) Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles. Behav Ecol Sociobiol 61:729–739

    Article  Google Scholar 

  • Perrin N, Mazalov V (2000) Local competition, inbreeding, and the evolution of sex-biased dispersal. Am Nat 155:116–127

    PubMed  Google Scholar 

  • Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206

    Article  PubMed  CAS  Google Scholar 

  • Putz J, Vorwagner EM, Hoch G (2016) Flight performance of Monochamus sartor and Monochamus sutor, potential vectors of the pine wood nematode. Lesnícky Casopis For J 62:195–201

    Google Scholar 

  • Ranius T (2006) Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul Ecol 48:177–188

    Article  Google Scholar 

  • Ranius T, Douwes P (2002) Genetic structure of two pseudoscorpions species living in tree hollows in Sweden. Anim Biodivers Conserv 25:67–74

    Google Scholar 

  • Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370

    Article  PubMed  Google Scholar 

  • Ranius T, Johansson V, Fahrig L (2011) Predicting spatial occurrence of beetles and pseudoscorpions in hollow oaks in southeastern Sweden. Biodivers Conserv 20:2027–2040

    Article  Google Scholar 

  • Ranius T, Bohman P, Hedgren O, Wikars LO, Caruso A (2014) Metapopulation dynamics of a beetle species confined to burned forest sites in a managed forest region. Ecography 37:797–804

    Article  Google Scholar 

  • Rink M, Sinsch U (2007) Radio-telemetric monitoring of dispersing stag beetles: implications for conservation. J Zool 272:235–243

    Article  Google Scholar 

  • Roff DA (1991) Life-history consequences of bioenergetic and biomechanical constraints on migration. Am Zool 31:205–215

    Article  Google Scholar 

  • Roff DA (1994) Habitat persistence and the evolution of wing dimorphism in insects. Am Nat 144:772–798

    Article  Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253

    Article  Google Scholar 

  • Rossi de Gasperis SR, Passacantilli C, De Zan LR, Carpaneto GM (2016) Overwintering ability and habitat preference of Morimus asper: a two-year mark-recapture study with implications for conservation and forest management. J Insect Conserv 20:821–835

    Article  Google Scholar 

  • Rotheray EL, Bussiere LF, Moore P, Bergstrom L, Goulson D (2014) Mark recapture estimates of dispersal ability and observations on the territorial behaviour of the rare hoverfly, Hammerschmidtia ferruginea (Diptera, Syrphidae). J Insect Conserv 18:179–188

    Article  Google Scholar 

  • Saint-Germain M, Drapeau P, Buddle CM (2008) Persistence of pyrophilous insects in fire-driven boreal forests: population dynamics in burned and unburned habitats. Divers Distrib 14:713–720

    Article  Google Scholar 

  • Saint-Germain M, Drapeau P, Hibbert A (2013) Saproxylic beetle tolerance to habitat fragmentation induced by salvage logging in a boreal mixed-cover burn. Insect Conserv Divers 6:381–392

    Article  Google Scholar 

  • Schauer B, Steinbauer MJ, Vailshery LS, Müller J, Feldhaar H, Obermaier E (2018a) Influence of tree hollow characteristics on saproxylic beetle diversity in a managed forest. Biodivers Conserv 27:853–869. https://doi.org/10.1007/s10531-017-1467-9

    Article  Google Scholar 

  • Schauer B, Bong J, Popp C, Obermaier E, Feldhaar H (2018b) Dispersal limitation of saproxylic insects in a managed forest? A population genetics approach. Basic Appl Ecol. https://doi.org/10.1016/j.baae.2018.01.005

    Google Scholar 

  • Schiegg K (2000a) Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography 23:579–587

    Article  Google Scholar 

  • Schiegg K (2000b) Effects of dead wood volume and connectivity on saproxylic insect species diversity. Ecoscience 7:290–298

    Article  Google Scholar 

  • Seibold S, Brandl R, Buse J, Hothorn T, Schmidl J, Thorn S, Müller J (2015) Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv Biol 29:382–390

    Article  PubMed  Google Scholar 

  • Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134

    Article  Google Scholar 

  • Shibata E (1986a) Adult populations of the Sugi bark borer, Semanotus japonicus Lacordaire (Coleoptera, Cerambycidae), in Japanese cedar stands—population parameters, dispersal, and spatial distribution. Res Popul Ecol 28:253–266

    Article  Google Scholar 

  • Shibata E (1986b) Dispersal movement of the adult Japanese pine sawyer, Monochamus alternatus hope (Coleoptera, Cerambycidae) in a young pine forest. Appl Entomol Zool 21:184–186

    Article  Google Scholar 

  • Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41

    Google Scholar 

  • Simms D, Husseneder C (2009) Assigning individual alates of the Formosan subterranean termite (Isoptera: Rhinotermitidae) to their colonies of origin within the context of an area-wide management program. Sociobiology 53:631–650

    Google Scholar 

  • Smith MT, Bancroft J, Li GH, Gao R, Teale S (2001) Dispersal of Anoplophora glabripennis (Cerambycidae). Environ Entomol 30:1036–1040

    Article  Google Scholar 

  • Smith MT, Tobin PC, Bancroft J, Li GH, Gao RT (2004) Dispersal and spatiotemporal dynamics of Asian longhorned beetle (Coleoptera: Cerambycidae) in China. Environ Entomol 33:435–442

    Article  Google Scholar 

  • Solbreck C (1980) Dispersal distances of migrating pine weevils, Hylobius abietis, Coleoptera-Curculionidae. Entomol Exp Appl 28:123–131

    Article  Google Scholar 

  • Southwood T (1962) Migration of terrestrial arthropods in relation to habitat. Biol Rev 37:171–211

    Article  Google Scholar 

  • Speight MCD (1989) Saproxylic invertebrates and their conservation. Nature and environment series, vol 42. Council of Europe, Strasbourg, p 79

    Google Scholar 

  • Speight MCD (2012) Species accounts of European Syrphidae (Diptera), 2012. Syrph the Net Publications, Dublin

    Google Scholar 

  • Sprecher-Uebersax E, Durrer H (2001) Verhaltensstudien über den Hirschkäfer Lucanus cervus L. mit Hilfe der Telemetrie und Videobeobachtung. Mitteilungen der Naturforschenden Gesellschaften beider Basel 5:161–182

    Google Scholar 

  • Starzomski BM, Bondrup-Nielsen S (2002) Analysis of movement and the consequence for metapopulation structure of the forked fungus beetle, Bolitotherus cornutus panzer (Tenebrionidae). Ecoscience 9:20–27

    Article  Google Scholar 

  • Stokland JN (2012) The saproxylic food web. In: Stokland JN, Siitonen P, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, Cambridge, pp 29–57

    Chapter  Google Scholar 

  • Svensson GP, Sahlin U, Brage B, Larsson MC (2011) Should I stay or should I go? Modelling dispersal strategies in saproxylic insects based on pheromone capture and radio telemetry: a case study on the threatened hermit beetle Osmoderma eremita. Biodivers Conserv 20:2883–2902

    Article  Google Scholar 

  • Sverdrup-Thygeson A (2010) Colonization of experimentally arranged resource patches—a case study of fungivorous beetles. Entomol Fenn 21:139–150

    Google Scholar 

  • Taylor RAJ, Bauer LS, Poland TM, Windell KN (2010) Flight performance of Agrilus planipennis (Coleoptera: Buprestidae) on a flight mill and in free flight. J Insect Behav 23:128–148

    Article  Google Scholar 

  • Tini M, Bardiani M, Chiari S, Campanaro A, Marizi E, Toni I, Mason F, Audisio PA, Carpetano GM (2018) Use of space and dispersal ability of a flagship saproxylic insect: a telemetric study of the stag beetle (Lucanus cervus) in a relict lowland forest. Insect Conserv Divers 11:116–129

    Article  Google Scholar 

  • Torres-Vila LM, Sanchez-Gonzalez A, Ponce-Escudero F, Martin-Vertedor D, Ferrero-Garcia JJ (2012) Assessing mass trapping efficiency and population density of Cerambyx welensii Küster by mark-recapture in dehesa open woodlands. Eur J For Res 131:1103–1116

    Article  Google Scholar 

  • Torres-Vila LM, Zugasti C, De-Juan JM, Oliva MJ, Montero C, Mendiola FJ, Conejo Y, Sanchez A, Fernandez F, Ponce F, Esparrago G (2015) Mark-recapture of Monochamus galloprovincialis with semiochemical-baited traps: population density, attraction distance, flight behaviour and mass trapping efficiency. Forestry 88:224–236

    Article  Google Scholar 

  • Torres-Vila LM, Mendiola-Diaz FJ, Sanchez-Gonzalez A (2017) Dispersal differences of a pest and a protected Cerambyx species (Coleoptera: Cerambycidae) in oak open woodlands: a mark-recapture comparative study. Ecol Entomol 42:18–32

    Article  Google Scholar 

  • Travis JMJ, Delgado M, Bocedi G, Baguette M, Barton K, Bonte D, Boulangeat I, Hodgson JA, Kubisch A, Penteriani V, Saastamoinen M, Stevens VM, Bullock JM (2013) Dispersal and species' responses to climate change. Oikos 122:1532–1540

    Article  Google Scholar 

  • Türke M, Fiala B, Linsenmair KE, Feldhaar H (2010) Estimation of dispersal distances of the obligately plant-associated ant Crematogaster decamera. Ecol Entomol 35:662–671

    Article  Google Scholar 

  • Ulyshen MD (2011) Arthropod vertical stratification in temperate deciduous forests: implications for conservation-oriented management. For Ecol Manag 261:1479–1489

    Article  Google Scholar 

  • Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85

    Article  PubMed  Google Scholar 

  • Ulyshen MD, Hanula JL, Horn S, Kilgo JC, Moorman CE (2004) Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests. For Ecol Manag 199:259–272

    Article  Google Scholar 

  • Vlasanek P, Sam L, Novotny V (2013) Dispersal of butterflies in a new Guinea rainforest: using mark-recapture methods in a large, homogeneous habitat. Ecol Entomol 38:560–569

    Article  Google Scholar 

  • Waldbauer GP, Sternburg JG (1979) Inbreeding depression and a behavioral mechanism for its avoidance in Hyalophora cecropia. Am Midl Nat 102:204–208

    Article  Google Scholar 

  • Weslien J, Lindelöw A (1990) Recapture of marked spruce bark beetles (Ips typographus) in pheromone traps using area-wide mass trapping. Can J For Res Revue Canadienne De Recherche Forestiere 20:1786–1790

    Article  Google Scholar 

  • Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49

    Article  PubMed  Google Scholar 

  • Whitlock MC (1992) Nonequilibrium population-structure in forked fungus beetles—extinction, colonization, and the genetic variance among populations. Am Nat 139:952–970

    Article  Google Scholar 

  • Wootton RJ (1992) Functional morphology of insect wings. Annu Rev Entomol 37:113–140

    Article  Google Scholar 

  • Zauli A, Chiari S, Hedenstrom E, Svensson GP, Carpaneto GM (2014) Using odour traps for population monitoring and dispersal analysis of the threatened saproxylic beetles Osmoderma eremita and Elater ferrugineus in central Italy. J Insect Conserv 18:801–813

    Article  Google Scholar 

  • Zeh JA, Zeh DW (2013) On the threshold of dispersal: hitchhiking on a giant fly favours exaggerated male traits in a male-dimorphic pseudoscorpion. Biol J Linn Soc 108:509–520

    Article  Google Scholar 

  • Zolubas P, Byers JA (1995) Recapture of dispersing bark beetle Ips typographus L (col, Scolytidae) in pheromone-baited traps—regression-models. J Appl Entomol Z Angew Entomol 119:285–289

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mike Ulyshen for the invitation to contribute this chapter to the book. We would also like to thank him as well as Kevin Chase and one more anonymous reviewer for very helpful suggestions on a former version of this manuscript. BS was supported by a grant of the LWF (grant number L056 of the Bayerische Landesanstalt für Wald und Forstwirtschaft).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Feldhaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feldhaar, H., Schauer, B. (2018). Dispersal of Saproxylic Insects. In: Ulyshen, M. (eds) Saproxylic Insects. Zoological Monographs, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75937-1_15

Download citation

Publish with us

Policies and ethics