Skip to main content

Wood-Feeding Termites

  • Chapter
  • First Online:

Part of the book series: Zoological Monographs ((ZM,volume 1))

Abstract

Termites originated from wood-feeding cockroaches and are dominant members of the saproxylic insect community in many tropical and subtropical biomes. Their ecological role comprises comminution (shredding) of dead organic material, bioturbation (mixing of organic and mineral material in soil horizons) and lignocellulose digestion (contributing to the decomposition arm of the global carbon cycle). The key adaptations of termites are their symbioses , mainly internal, with protists, archaea, bacteria and (in a special case) fungi. Thus the evolution of modern termites from the detritus-feeding common ancestor of termites and wood-feeding cockroaches can be reconstructed as a stepwise process to secure the transfer of increasingly specialised intestinal symbionts from parent to offspring. This selection resulted in the extant eusociality of all termites, characterised by generational overlap, proctodaeal feeding, altricial development, paedomorphosis and co-evolution with microorganisms. An account is given of their typical abundance, biomass, trophic diversification and impacts on soil health and the terrestrial carbon cycle. Termite behaviour associated with finding and consuming woody resources is also considered. An overview of the symbioses between termites and microbes is presented, focused on recent work revealing the relative contributions of host and microbiota to the digestion of lignocellulose. A separate account of the fungus-growing subfamily Macrotermitinae is added, as their impact on organic decomposition in Africa and Asia is substantial.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125–148

    Google Scholar 

  • Anklin-Mühlemann R, Bignell DE, Veivers PC et al (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J Insect Physiol 41:929–940

    Article  Google Scholar 

  • Beccaloni GW (2012) Blattodea species file. Catalogue of life: 2012 annual checklist. http://www.catalogueoflife.org/annual-checklist/2012/details/database/id/51. Accessed 27 Nov 2017

  • Berge L, Bignell DE, Rahman H et al (2008) Quantification of termite attack on lying dead wood by a line intersection method in the Kabili-Sepilok Forest Reserve, Sabah, Malaysia. Insect Conserv Diver 1:85–94

    Article  Google Scholar 

  • Bignell DE (1977) An experimental study of cellulose and hemicellulose degradation in the alimentary canal of the American cockroach. Can J Zool 55:579–589

    Article  CAS  Google Scholar 

  • Bignell DE (1994) Soil-feeding and gut morphology in higher termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview, Boulder, pp 131–159

    Google Scholar 

  • Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 189–208

    Chapter  Google Scholar 

  • Bignell DE (2006) Termites as soil engineers and soil processors. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 183–220

    Chapter  Google Scholar 

  • Bignell DE (2010) Termites. In: Reay D, Smith P, van Amstel A (eds) Methane and climate change. Earthscan, London, pp 62–73

    Google Scholar 

  • Bignell DE (2011) Morphology, physiology, biochemistry and functional design of the termite gut: an evolutionary Wonderland. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 375–412

    Chapter  Google Scholar 

  • Bignell DE (2016) The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In: Hurst CJ (ed) The mechanistic benefits of microbial symbionts, Advances in Environmental Microbiology 2. Springer, Dordrecht, pp 121–172

    Chapter  Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 363–387

    Chapter  Google Scholar 

  • Bignell DE, Jones DT (2014) A taxonomic index, with names of descriptive authorities of termite genera and species: an accompaniment to Biology of termites: a modern synthesis (Bignell DE, Roisin Y, Lo N, Editors. 2011. Springer, Dordrecht. 576pp). J Insect Sci 14:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bignell DE, Oskarsson H, Anderson J et al (1983) Structure, microbial associations and functions of the so-called “mixed segment” of the gut in two soil-feeding termites Procubitermes aburiensis Sjöstedt and Cubitermes severus Silvestri (Termitidae, Termitinae). J Zool 201:445–480

    Article  Google Scholar 

  • Bignell DE, Anderson JM, Crosse R (1991) Isolation of facultatively aerobic actinomycetes from the gut, parent soil and mound materials of the termites Procubitermes aburiensis and Cubitermes severus. FEMS Microbiol Ecol 85:151–160

    Google Scholar 

  • Bignell DE, Eggleton P, Nunes L et al (1997) Termites as mediators of carbon fluxes in tropical forest: budgets for carbon dioxide and methane emissions. In: Watt AD, Stork NE, Hunter MD (eds) Forests and insects. Chapman and Hall, London, pp 109–134

    Google Scholar 

  • Bignell DE, Tondoh J, Dibog L et al (2005) Belowground diversity assessment: developing a key functional group approach in best-bet alternatives to slash-and-burn. In: Palm CA, Vosti SA, Sanchez PA (eds) Slash-and-burn agriculture: the search for alternatives. Columbia University Press, New York, pp 119–142

    Google Scholar 

  • Bonachela JA, Pringle RM, Sheffer E et al (2015) Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science 347:651–655

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon T, Šobotník J, Lepoint G et al (2011) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol 36:261–269

    Article  Google Scholar 

  • Bourguignon T, Lo N, Cameron SL et al (2015) The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol 32:406–421

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA (1982) Intestinal microbiology of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  • Brugerolle G, Radek R (2006) Symbiotic protozoa of termites. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 243–269

    Chapter  Google Scholar 

  • Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, vol 7. Springer, New York, pp 439–474

    Chapter  Google Scholar 

  • Brune A (2011) Microbial symbioses in the digestive tract of lower termites. In: Rosenberg E, Gophna U (eds) Beneficial microorganisms in multicellular life forms. Springer, Berlin, pp 3–25

    Google Scholar 

  • Brune A (2012) Endomicrobia: intracellular symbionts of termite gut flagellates. J Endocytobio Cell Res 23:11–15

    Google Scholar 

  • Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475

    Google Scholar 

  • Brune A, Stingl U (2005) Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In: Overmann J (ed) Molecular basis of symbiosis. Springer, Berlin, pp 39–60

    Google Scholar 

  • Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    Article  PubMed  CAS  Google Scholar 

  • Brussaard L, Aanen DK, Briones MJI et al (2012) Biogeography and phylogenetic community structure of soil invertebrate engineers: global to local patterns, implications for ecosystem functioning and services and global environmental change impacts. In: Wall DH et al (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 201–232

    Chapter  Google Scholar 

  • Butler JHA, Buckerfield JC (1979) Digestion of lignin by termites. Soil Biol Biochem 11:507–513

    Article  CAS  Google Scholar 

  • Cameron SL, Lo N, Bourguignon T et al (2012) A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol Phylogenet Evol 65:163–173

    Article  PubMed  Google Scholar 

  • Chouvenc T, Su N-Y, Robert A (2009) Inhibition of Metarhizium anisopliae in the alimentary tract of the eastern subterranean termite Reticulitermes flavipes. J Invertebr Pathol 101:130–136

    Article  PubMed  CAS  Google Scholar 

  • Chouvenc T, Efstathion CA, Elliott ML et al (2013) Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc R Soc B 280:20131885

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciais PC, Sabine G, Bala L et al (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  • Clay NA, Little N, Riggins JJ (2017) Inoculation of ophiostomatoid fungi in loblolly pine trees increases the presence of subterranean termites in fungal lesions. Arthropod Plant Interact 11:213–219

    Article  Google Scholar 

  • Cleveland LR, Hall SR, Sanders EP et al (1934) The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17:185–342

    Google Scholar 

  • Collins NM (1983) Termite populations and their role in litter removal in Malaysian rain forests. In: Sutton SL, Whitmore TC, Chadwick AC (eds) Tropical rain forest: ecology and management. Blackwell Science, Oxford, pp 311–325

    Google Scholar 

  • Cookson LJ (1987) 14C-lignin degradation by three Australian termite species. Wood Sci Technol 21:11–25

    CAS  Google Scholar 

  • Costa-Leonardo AM, Haifig I (2010) Pheromones and exocrine glands in Isoptera. Vitam Horm 83:521–549

    Article  PubMed  CAS  Google Scholar 

  • Cov MR, Salem TZ, Denton JS et al (2010) Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol 40:723–732

    Article  CAS  Google Scholar 

  • Cypret JA, Judd TM (2015) The role of salivary enzymes in the detection of polysaccharides in the termite Reticulitermes flavipes Kollar (Isoptera: Rhnotermitidae). Sociobiology 62:593–597

    Article  Google Scholar 

  • Dahlsjö CAL, Parr CL, Mahli Y et al (2014) First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. J Trop Ecol 30:143–152

    Article  Google Scholar 

  • Dambros CS, Morais JW, Vasconcellos A et al (2016) Association of ant predators and edaphic conditions with termite diversity in an Amazonian Rain Forest. Biotropica 48:237–245

    Article  Google Scholar 

  • Dangerfield JM, McCarthy TS, Ellery WN (1998) The mound-building termite Macrotermes michaelseni as an ecosystem engineer. J Trop Ecol 14:507–520

    Article  Google Scholar 

  • Darlington J (1994) Nutrition and evolution in fungus-growing termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview, Boulder, pp 105–130

    Google Scholar 

  • Darlington JPEC (2012) Termites (Isoptera) as secondary occupants in mounds of Macrotermes michaelseni in Kenya. Insect Soc 59:159–165

    Article  Google Scholar 

  • Davies RG, Eggleton P, Dibog L et al (1999) Successional response of a tropical termite assemblage to experimental habitat perturbation. J Appl Ecol 36:946–962

    Article  Google Scholar 

  • Davies RG, Eggleton P, Dubbin WE et al (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30:847–877

    Article  Google Scholar 

  • Davies AB, Parr CL, van Rensburg BJ (2010) Termites and fire: current understanding and future research directions for improved savannah conservation. Austral Ecol 35:482–486

    Article  Google Scholar 

  • Davies AB, Eggleton P, van Rensburg BJ et al (2012) The pyrodiversity-biodiversity hypothesis: a test with savannah termite assemblages. J Appl Ecol 49:422–430

    Article  Google Scholar 

  • Davies AB, Eggleton P, van Rensburg BJ et al (2013) Assessing the relative efficiency of termite sampling methods along a rainfall gradient in African savannas. Biotropica 45:474–479

    Article  Google Scholar 

  • Davies AB, Eggleton P, van Rensburg BJ et al (2015) Seasonal activity patterns of African savannah termites vary across a rainfall gradient. Insect Soc 62:157–165

    Article  Google Scholar 

  • Davies AB, van Rensburg BJ, Robertson MP et al (2016) Seasonal variation in the relative dominance of herbivore guilds in an African savannah. Ecology 97:1618–1624

    Article  PubMed  Google Scholar 

  • Dietrich C, Köhler T, Brune A (2014) The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol 80:2261–2269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donovan SE, Jones DT, Sands WA et al (2000) The morphological phylogenetics of termites (Isoptera). Biol J Linn Soc 70:467–513

    Article  Google Scholar 

  • Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366

    Article  Google Scholar 

  • Donovan SE, Eggleton P, Martin A (2002) Species composition of termites of the Nyika plateau forests, northern Malawi, over an altitudinal gradient. Afr J Ecol 40:379–385

    Article  Google Scholar 

  • Donovan SE, Purdy KJ, Kane MD et al (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dosso K, Yéo K, Konaté S et al (2012) Importance of protected areas for biodiversity conservation in central Côte d’Ivoire: comparison of termite assemblages between two neighboring areas under differing levels of disturbance. J Insect Sci 12:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Duarte S, Duarte M, Borges PAV et al (2016) Dietary-driven variation effects on the symbiotic flagellate protest communities of the subterranean termite Reticulitermes grassei Clément. J Appl Entomol 141:300–307

    Article  CAS  Google Scholar 

  • Eggleton P (2011) An introduction to termites: biology, taxonomy, and functional morphology. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 1–26

    Google Scholar 

  • Eggleton P, Tayasu I (2001) Feeding groups, lifetypes, and the global ecology of termites. Ecol Res 16:941–960

    Article  Google Scholar 

  • Eggleton P, Beccaloni G, Inward D (2007) Response to Lo et al. Biol Lett 3:564–565

    Article  PubMed Central  Google Scholar 

  • Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novit 3650:1–27

    Article  Google Scholar 

  • Erpenbach A, Wittig R (2016) Termites and savannas – an overview on history and scientific progress with particular respect to West Africa and to the genus Macrotermes. Flora et Vegetatio Sudano-Sambesica 19:35–51

    Google Scholar 

  • Esenther GR, Kirk TK (1974) Catabolism of aspen sapwood in Reticulitermes flavipes. Ann Entomol Soc Am 67:989–991

    Article  CAS  Google Scholar 

  • Evans TA (2011) Invasive termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 519–562

    Google Scholar 

  • Evans TA, Lai JCS, Toledano E et al (2005) Termites assess wood size by using vibrational signals. Proc Natl Acad Sci USA 102:3732–3737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evans TA, Inta R, Lai JCS et al (2007) Foraging vibration signals attract foragers and identify food size in the drywood termites, Cryptotermes secundus. Insect Soc 54:374–382

    Article  Google Scholar 

  • Evans TA, Inta R, Lai JCS et al (2009) Termites eavesdrop to avoid competitors. Proc R Soc Lond B 276:4035–4041

    Article  Google Scholar 

  • Evans TA, Dawes TZ, Ward PR et al (2011) Ants and termites increase crop yield in a dry climate. Nat Commun 2:262

    Article  PubMed  CAS  Google Scholar 

  • Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:456–474

    Article  CAS  Google Scholar 

  • Geib SM, Filley TR, Hatcher PG et al (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillison AN, Jones DT, Susilo F-X et al (2003) Vegetation indicates diversity of macroinvertebrates: a case study with termites sampled across a land-use intensification gradient in lowland Sumatra. Org Divers Ecol 3:111–126

    Article  Google Scholar 

  • Grace KJ, Campora CE (2005) Food location and discrimination by subterranean termites (isopteran: Rhinotermitidae). In: Lee CY, Robinson WH (eds) Proceedings of the fifth international conference on urban pests. Executive committee of the international conference on urban pests, Singapore

    Google Scholar 

  • Grassé P-P (1959) La reconstruction du nid et les coordinations inter-individuelles chez Belicositermes natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insect Soc 6:41–81

    Article  Google Scholar 

  • Griffiths BS, Bracewell JM, Robertson GW et al (2013) Pyrolysis-mass spectrometry confirms enrichment of lignin in the faeces of a wood-feeding termite, Zootermopsis nevadensis and depletion of peptides in a soil-feeder, Cubitermes ugandensis. Soil Biol Biochem 57:957–959

    Article  CAS  Google Scholar 

  • Hanus R, Söbotnik J, Krasulová J et al (2012) Nonadecadieone, a new termite trail-following pheromone identified in Glossotermes oculatus (Serritermitidae). Chem Senses 37:55–63

    Article  PubMed  CAS  Google Scholar 

  • Harazano K, Yamashita M, Shinzato N et al (2007) Isolation and characterization of aromatics-degrading microorganisms from the gut of the lower termite Coptotermes formosanus. Biosci Biotechnol Biochem 67:889–892

    Article  Google Scholar 

  • He S, Ivanova N, Kirton E et al (2013) Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One 8(4):e61126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Himmi SK, Yoshimura T, Yanase Y et al (2014) X-ray tomographic analysis of the initial structure of the royal chamber and the nest-founding behavior of the drywood termite Incisitermes minor. J Wood Sci 60:453–460

    Article  Google Scholar 

  • Himmi SK, Yoshimura T, Yanase Y et al (2016a) Nest-gallery development and caste composition of isolated foraging group of the drywood termite (Isoptera: Kalotermitidae). Insects 7:38

    Article  PubMed Central  Google Scholar 

  • Himmi SK, Yoshimura T, Yanase Y et al (2016b) Wood anatomical selectivity of drywood termite in the nest gallery establishment revealed by X-ray tomography. Wood Sci Technol 50:631–643

    Article  CAS  Google Scholar 

  • Ho A, Erens H, Mujinya BB et al (2013) Termites facilitate methane oxidation and shape the methanotrophic community. Appl Environ Microbiol 79:7234–7240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hongoh Y (2011) Towards the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68:1311–1325

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Ekpornprasit L, Inoue T et al (2006) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516

    Article  PubMed  CAS  Google Scholar 

  • Hopkins DW, Chudek JA, Bignell DE et al (1998) Application of 13C NMR to investigate the transformations and biodegradation of organic materials by some soil- and litter-dwelling insects. Biodegradation 9:423–431

    Article  PubMed  CAS  Google Scholar 

  • Hyodo F, Inoue T, Azuma J-J et al (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658

    Article  CAS  Google Scholar 

  • Hyodo F, Tayasu I, Inoue T et al (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17:186–193

    Article  Google Scholar 

  • Inoue T, Takematsu Y, Yamada A et al (2006) Diversity and abundance of termites along an altitudinal gradient in Khao Kitchagoot National Park, Thailand. J Trop Ecol 22:606–612

    Article  Google Scholar 

  • Inward D, Beccaloni G, Eggleton P (2007a) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inward DJG, Vogler AP, Eggleton P (2007b) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967

    Article  PubMed  CAS  Google Scholar 

  • Jeon W, Kang S-Y, Su N-Y et al (2010) A constraint condition for foraging strategy in subterranean termites. J Insect Sci 10:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Eggleton P (2011) Global biogeography of termites: a compilation of sources. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 477–498

    Google Scholar 

  • Jones DT, Susilo F-X, Bignell DE et al (2003) Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. J Appl Ecol 40:380–391

    Article  Google Scholar 

  • Joseph GS, Seymour CL, Cumming GS et al (2013) Termite mounds as islands: woody plant assemblages relative to termitarium size and soil properties. J Veg Sci 24:702–711

    Article  Google Scholar 

  • Jost C, de-Camargo-Dietrich CRR, Costa-Leonardo AM (2012) A comparative tunneling network approach to assess interspecific competition effects in termites. Insect Soc 59:369–379

    Article  Google Scholar 

  • Jouquet P, Tessier D, Lepage M (2004) The soil structural stability of termite nests: role of clays in Macrotermes bellicosus (Isoptera, Macrotermitinae) mound soils. Eur J Soil Biol 40:23–29

    Article  Google Scholar 

  • Jouquet P, Barré P, Lepage M et al (2005) Impact of subterranean fungus-growing termites (Isoptera, Macrotermitinae) on chosen soil properties in a West African savanna. Biol Fertil Soils 41:365–370

    Article  Google Scholar 

  • Jouquet P, Traoré S, Choosai C et al (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol 47:215–222

    Article  Google Scholar 

  • Jouquet P, Janeau J-L, Pisano A et al (2012) Influence of earthworms and termites on runoff and erosion in a tropical steep slope fallow in Vietnam: a rainfall simulation experiment. Appl Soil Ecol 61:161–168

    Article  Google Scholar 

  • Jouquet P, Guilleux N, Chintakunta S et al (2015) The influence of termites on soil sheeting properties varies depending on the materials on which they feed. Eur J Soil Biol 69:74–78

    Article  Google Scholar 

  • Kambhampati S, Eggleton P (2000) Taxonomy and phylogeny of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 1–23

    Google Scholar 

  • Karl ZJ, Scharf ME (2015) Effects of five diverse lignocellulose diets on digestive enzyme biochemistry in the termite Reticulitermes flavipes. Arch Insect Biochem Physiol 90:89–103

    Article  PubMed  CAS  Google Scholar 

  • Katsumata KS, Jin Z, Hori K et al (2007) Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis. J Wood Sci 53:419–426

    Article  CAS  Google Scholar 

  • Ke J, Singh D, Yang X et al (2011) Thermal characterization of softwood lignin modification by termites Coptotermes formosanus (Shiraki). Biomass Bioenergy 35:3617–3626

    Article  CAS  Google Scholar 

  • Köhler T, Stingl U, Meuser K et al (2008) Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.) Environ Microbiol 10:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Köhler T, Dietrich C, Scheffrahn R et al (2012) High resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp). Appl Environ Microbiol 78:4691–4701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konaté S, Le Roux X, Verdier B et al (2003) Effect of underground fungus-growing termites on carbon dioxide emission at the point- and landscape-scales in an African savanna. Funct Ecol 17:305–314

    Article  Google Scholar 

  • König H, Fröhlich J, Hertel H (2006) Diversity and lignocellulolytic activities of cultured microorganisms. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 271–301

    Chapter  Google Scholar 

  • Korb J (2007) Termites. Curr Biol 17:R995–R999

    Article  PubMed  CAS  Google Scholar 

  • Korb J (2008) Termites, hemimetabalous white ants? Front Zool 5:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Korb J (2011) Termite mound architecture, from function to construction. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 349–373

    Google Scholar 

  • Korb J, Aanen DK (2003) The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav Ecol Sociobiol 53:65–71

    Google Scholar 

  • Korb J, Buschmann M, Schafberg S et al (2012) Brood care and social evolution in termites. Proc R Soc B 279:2662–2671

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudo Y (2009) Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Biosci Biotechnol Biochem 73:2561–2567

    Article  PubMed  CAS  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic, Dordrecht, 654p

    Book  Google Scholar 

  • Lee S-H, Su N-Y (2010) Simulation study on the tunnel networks of subterranean termites and the foraging behavior. J Asia Pac Entomol 13:83–90

    Article  Google Scholar 

  • Lefebvre T, Miambi E, Pando A et al (2009) Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insect Soc 56:269–276

    Article  Google Scholar 

  • Legendre F, Whiting MF, Bordereau C et al (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol 48:615–627

    Article  PubMed  CAS  Google Scholar 

  • Lepage M, Darlington JPEC (2000) Population dynamics of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 333–361

    Chapter  Google Scholar 

  • Lepage M, Abbadie L, Mariotti A (1993) Food habits of sympatric species (Isoptera, Macrotermitinae) as determined by stable isotope analysis in a Guinean savanna (Lamto, Cöte d’Ivoire). J Trop Ecol 9:303–311

    Article  Google Scholar 

  • Li L, Fröhlich J, König H (2006) Cellulose digestion in the termite gut. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 221–241

    Chapter  Google Scholar 

  • Li H, Dietrich C, Zhu N et al (2016) Age polyethism drives community structure of the bacterial gut microbiota in the fungus-cultivating termite Odontotermes formosanus. Environ Microbiol 18:1440–1451

    Article  PubMed  CAS  Google Scholar 

  • Li H, Yelle DJ, Li C et al (2017) Lignocellulose pretreatment in a fungus-cultivating termite. Proc Natl Acad Sci USA 114:4709–4714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lima JT, Costa-Leonardo AM (2012) Tunneling behavior of the Asian subterranean termite in heterogeneous soil: presence of cues on the foraging area. Anim Behav 8:1269–1278

    Article  Google Scholar 

  • Lo N, Bandi C, Watanabe H et al (2003) Evidence for co-cladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Mol Biol Evol 20:907–913

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Engel MS, Cameron S et al (2007) Save Isoptera: a comment on Inward et al. Biol Lett 3:562–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackenzie LM, Muigai AT, Osir EO et al (2007) Bacterial diversity in the intestinal tract of the fungus-cultivating termite Macrotermes michaelseni (Sjöstedt). Afr J Biotechnol 6:658–667

    CAS  Google Scholar 

  • Maekawa K, Lo N, Rose HA et al (2003) The evolution of soil-burrowing cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia. Proc R Soc Lond B 270:1301–1307

    Article  Google Scholar 

  • Makonde HM, Boga HL, Osiemo Z (2013) 16S-rRNA-based analysis of bacterial diversity in the gut of fungus-cultivating termites (Microtermes and Odontotermes species). Anton Leeuw Int J G 104:869–883

    Article  Google Scholar 

  • Makonde HM, Mwirichia R, Osiemo Z et al (2015) 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils. SpringerPlus 4:471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mando A, Miedema R (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Appl Soil Ecol 6:241–249

    Article  Google Scholar 

  • Martin MM (1987) Invertebrate-microbial interactions. Ingested fungal enzymes in arthropod biology. Comstock Publishing Associates, Ithaca, 187p

    Google Scholar 

  • Mathew GM, Ju Y-M, Lai C-Y et al (2012) Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists. Microb Ecol 79:540–517

    Google Scholar 

  • Matsui T, Tanaka J, Namihira T et al (2012) Antibiotics production by an actinomycete isolated from the termite gut. J Basic Microbiol 52:731–735

    Article  PubMed  CAS  Google Scholar 

  • Mikaelyan A, Strassert FH, Tokuda G et al (2014) The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.) Environ Microbiol 16:2711–2722

    Article  CAS  Google Scholar 

  • Mikaelyan A, Dietrich C, Köhler T et al (2015) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24:5284–5295

    Article  PubMed  CAS  Google Scholar 

  • Mikaelyan A, Thompson C, Hofer MJ et al (2016) Deterministic assembly of complex bacterial communities in guts of germ-free cockroaches. Appl Environ Microbiol 82:4

    Article  CAS  Google Scholar 

  • Mikaelyan A, Meuser K, Brune A (2017) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol 93:fiw210

    Article  PubMed  CAS  Google Scholar 

  • Miyata R, Noda N, Tamaki J et al (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem 71:1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Moe SR, Mobaek R, Narmo AK (2009) Mound building termites contribute to savanna vegetation heterogeneity. Plant Ecol 202:31–40

    Article  Google Scholar 

  • Mueller UG, Dash D, Rabeling C et al (2008) Coevolution between attine ants and actinomycete bacteria: a reevaluation. Evolution 62:2894–2912

    Article  PubMed  CAS  Google Scholar 

  • Nalepa CA (2010) Altricial development in subsocial cockroach ancestors: foundation for phenotypic plasticity in extant termites. Evol Dev 12:95–105

    Article  PubMed  Google Scholar 

  • Nalepa CA (2011) Altricial development in wood-feeding cockroaches: the key antecedent of termite eusociality. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 69–95

    Google Scholar 

  • Nalepa CA (2017) What kills the hindgut flagellates of lower termites during the host molting cycle? Microorganisms 5:82. https://doi.org/10.3390/microorganisms5040082

    Article  PubMed Central  Google Scholar 

  • Nalepa CA, Bandi C (2000) Characterizing the ancestors: paedomorphosis and termite evolution. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 53–75

    Chapter  Google Scholar 

  • Nalepa C, Bignell DE, Bandi C (2001) Detritivory, coprophagy and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201

    Article  Google Scholar 

  • Ngugi DK, Tsanuo MK, Boga HI (2007) Benzoic acid-degrading bacteria from the intestinal tract of Macrotermes michaelseni Sjöstedt. J Basic Microbiol 47:87–92

    Article  CAS  Google Scholar 

  • Nobre T, Aanen DK (2012) Fungiculture or termite husbandry? The ruminant hypothesis. Insects 3:307–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Nobre T, Nunes L, Bignell DE (2007a) Tunnel geometry of the subterranean termite Reticulitermes grassei (Isoptera: Rhinotermitidae) in response to sand bulk density and the presence of food. Insect Sci 14:511–518

    Article  Google Scholar 

  • Nobre T, Nunes L, Bignell DE (2007b) Estimation of foraging territories of Reticulitermes grassei through mark-release-capture. Entomol Exp Appl 123:119–128

    Article  Google Scholar 

  • Nobre T, Nunes L, Bignell DE (2008) Survey of subterranean termites (Isoptera: Rhinotermitidae) in a managed silvicultural plantation in Portugal, using a line intersection method (LIS). Bull Entomol Res 99:11–21

    Article  PubMed  Google Scholar 

  • Nobre T, Rouland-Lefèvre C, Aanen DK (2011) Comparative biology of fungus cultivation in termites and ants. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 193–210

    Google Scholar 

  • Noda S, Inoue T, Hongoh Y et al (2006) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20

    Article  PubMed  CAS  Google Scholar 

  • Nunes L, Bignell DE, Lo N et al (1997) On the respiratory quotient (RQ) of termites (Insecta: Isoptera). J Insect Physiol 43:749–758

    Article  PubMed  CAS  Google Scholar 

  • Nunes CA, Quintino AV, Constantino R et al (2017) Patterns of taxonomic and functional diversity of termites along a tropical elevation gradient. Biotropica 49:186–194

    Article  Google Scholar 

  • O’Connor TG (2013) Termite mounds as browsing hotspots: an exception to the rule. J Veg Sci 24:211–213

    Article  Google Scholar 

  • Oberst S, Lai JCS, Evans TA (2016) Termites utilize clay to build structural supports and so increase foraging resources. Sci Rep 6:20990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient biorecycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438

    Google Scholar 

  • Otani S, Mikaelyan A, Nobre T et al (2014) Identifying the core microbial community in the gut of fungus-growing termites. Mol Ecol 23:4631–4644

    Article  PubMed  CAS  Google Scholar 

  • Palin O, Eggleton P, Mahli Y et al (2011) Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43:100–107

    Article  Google Scholar 

  • Pellens R, D’Haese C, Belles X et al (2007) The evolutionary transition from subsocial to eusocial behaviour in Dictyoptera: phylogenetic evidence for modification of the “shift-in-dependent-care” hypothesis with a new subsocial cockroach. Mol Phylogenet Evol 43:616–626

    Article  PubMed  CAS  Google Scholar 

  • Peterson BF, Scharf M (2016) Lower termite associations with microbes: synergy, protection, and interplay. Front Microbiol 7:1–7

    Article  Google Scholar 

  • Peterson BF, Stewart HL, Scharf ME (2015) Quantification of symbiotic contributions to lower termite lignocellulose digestion using antimicrobial treatments. Insect Biochem Mol Biol 59:80–88

    Article  PubMed  CAS  Google Scholar 

  • Pinto-Thomas AA, Anderson MA, Suen G et al (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123

    Article  CAS  Google Scholar 

  • Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci USA 78:4601–4460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poulsen M, Hu H, Cai L et al (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci USA 111:14500–14505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radek R (1999) Flagellates, bacteria and fungi associated with termites: diversity and function in nutrition – a review. Ecotropica 5:183–196

    Google Scholar 

  • Rahman NA, Parks DH, Willner DL (2015) A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Raychoudhary R, Sen R, Cal Y et al (2013) Comparative metatranscriptomic signatures of wood and paper feeding in the gut of the termite Reticulitermes flavipes (Isoptera: Rhionotermitidae). Insect Mol Biol 22:155–171

    Article  CAS  Google Scholar 

  • Reinhard J, Hertel H, Kaib M (1997) Systematic search for food in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). Insect Soc 44:147–158

    Article  Google Scholar 

  • Riggins JJ, Little NS, Eckhardt LH (2014) Correlation between infection by ophiostomatoid fungi and the presence of subterranean termites in loblolly pine (Pinus taeda L.) roots. Agric For Entomol 16:260–264

    Article  Google Scholar 

  • Rosengaus R, Mead K, Du Comb WS et al (2013) Nest sanitation through defecation: antifungal properties of wood cockroach feces. Naturwissenschaften 100:1050–1059

    Article  CAS  Google Scholar 

  • Rosengaus R, Schultheis KF, Yalonetskaya A et al (2014) Symbiont-derived β-1,3-glucanases in a social insect: mutualism beyond nutrition. Front Microbiol 5:607

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossmassler K, Dietrich C, Thompson C et al (2015) Metagenomic analysis of the microbiota in the highly compartmented hindgus of six wood- and soil-feeding higher termites. Microbiome 3:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 289–306

    Chapter  Google Scholar 

  • Rouland-Lefèvre C (2011) Termites as pests of agriculture. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 499–517

    Google Scholar 

  • Rouland-Lefèvre C, Bignell DE (2001) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic, Dordrecht, pp 731–756

    Google Scholar 

  • Rückamp D, Martius C, Bragança MAL et al (2011) Lignin patterns in soil and termite nests of the Brazilian Cerrado. Appl Soil Ecol 48:45–52

    Article  Google Scholar 

  • Rust MK, Su NY (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375

    Article  PubMed  CAS  Google Scholar 

  • Sabree ZL, Kambhampati S, Moran NA (2009) Nitrogen cycling and nutrient provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci USA 106:19521–19526

    Article  PubMed  PubMed Central  Google Scholar 

  • Sands WA (1969) The association of termites and fungi. In: Krishna K, Weesner FM (eds) Biology of termites, vol I. Academic, New York, pp 495–524

    Chapter  Google Scholar 

  • Scharf ME, Tartar A (2008) Termite digestomes as sources for novel lignocellulases. Biofuels Bioprod Biorefin 2:540–552

    Article  CAS  Google Scholar 

  • Scharf ME, Karl ZJ, Sethi A et al (2011) Defining host-symbiont collaboration in termite lignocellulose digestion. Commun Integr Biol 4:761–763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuurman G (2005) Decomposition rates and termite assemblage composition in semiarid Africa. Ecology 86:1236–1249

    Article  Google Scholar 

  • Scott AC, Taylor TN (1983) Plant/animal interactions during the Upper Carboniferous. Bot Rev 49:259–307

    Article  Google Scholar 

  • Sethi A, Slack JM, Kovaleva ES et al (2012) Lignin-associated metagene expression in a lignocellulose-digesting termite. Insect Biochem Mol Biol 43:91–101

    Article  PubMed  CAS  Google Scholar 

  • Sethi A, Kovaleva ES, Slack JM et al (2013) A GHF7 cellulase from the protist symbiont community of Reticulitermes flavipes enables more efficient lignocellulose processing by host enzymes. Arch Insect Biochem Physiol 84:175–193

    Article  PubMed  CAS  Google Scholar 

  • Seymour CL, Joseph GS, Makumbe M et al (2016) Woody species composition in an African savanna: determined by centuries of termite activity but modulated by 50 years of ungulate herbivory. J Veg Sci 27:824–833

    Article  Google Scholar 

  • Sileshi GW, Arshad MA (2012) Application of distance-decay models for inferences about termite mound induced patterns in dryland ecosystems. J Arid Environ 77:138–148

    Article  Google Scholar 

  • Sim S, Ku SJ, Lee S-H (2012) Directional selection by termites at a branching node created by a ballpoint pen. J Asia Pac Entomol 15:447–450

    Article  Google Scholar 

  • Sleaford F, Bignell DE, Eggleton P (1996) A pilot analysis of gut contents in termites from the Mbalmayo Forest Reserve, Cameroon. Ecol Entomol 21:279–288

    Article  Google Scholar 

  • Šobotnik J, Dahlsjö CAL (2017) Isoptera. In: Reference module in life sciences. Elsevier. doi:https://doi.org/10.1016/B978-0-12-809633-8.02256-1

    Chapter  Google Scholar 

  • Stoklosa AM, Ulyshen MD, Fan Z et al (2016) Effects of mesh bag enclosure and termites on fine woody debris decomposition in a subtropical forest. Basic Appl Ecol 17:463–470

    Article  Google Scholar 

  • Sugimoto A, Bignell DE, MacDonald JA (2000) Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 409–435

    Chapter  Google Scholar 

  • Tai V, Keeling PJ (2013) Termite hindguts and the ecology of microbial communities in the sequencing age. J Eukaryot Microbiol 60:421–428

    Article  PubMed  Google Scholar 

  • Tai V, James E, Nalepa C et al (2015) The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol 81:1059–1070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taprab Y, Johjima T, Maeda Y et al (2006) Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand. Appl Environ Microbiol 71:7696–7704

    Article  CAS  Google Scholar 

  • Tegtmeier D, Thompson C, Schauer C et al (2016) Oxygen affects gut bacterial colonization and metabolic activities in a gnotobiotic cockroach model. Appl Environ Microbiol 82:4

    Article  Google Scholar 

  • Tholen A, Brune A (2000) Impact of oxygen on the metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449

    Article  PubMed  CAS  Google Scholar 

  • Thongaram T, Kosono S, Ohkuma M et al (2003) Gut of higher termites as a niche or alkaliphiles as shown by culture-based and culture-independent studies. Microbes Environ 18:152–115

    Article  Google Scholar 

  • Tokuda G, Tsuboi Y, Kihara K et al (2014) Metabolomic profiling of 13C-labelled cellulose digestion in a lower termites: insights into gut symbiont function. Proc R Soc Lond B 281:20140990

    Article  CAS  Google Scholar 

  • Traniello JFA, Leuthold RH (2000) Behaviour and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 141–168

    Chapter  Google Scholar 

  • Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85

    Article  PubMed  Google Scholar 

  • Ulyshen MD, Wagner TL (2013) Quantifying arthropod contributions to wood decay. Methods Ecol Evol 4:345–352

    Article  Google Scholar 

  • van der Giezen M (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56:221–231

    Article  PubMed  CAS  Google Scholar 

  • Velu G, Ramasamy K, Kumar K et al (2011) Green house gas emissions from termite ecosystem. Afr J Environ Sci Technol 5:56–64

    CAS  Google Scholar 

  • Verma M, Sharma S, Prasad R (2009) Biological alternatives for termite control: a review. Int Biodeter Biodegr 63:959–972

    Article  CAS  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Shinzate N, Fukatsu T (2003) Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67:1797–1801

    Article  PubMed  CAS  Google Scholar 

  • Wood TG (1976) The role of termites (Isoptera) in decomposition processes. In: Anderson JM, MacFadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell Scientific, Oxford, pp 145–168

    Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 245–292

    Google Scholar 

  • Wood TG, Thomas RJ (1989) The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins NM, Hammond P et al (eds) Insect-fungus interactions. Academic, London, pp 69–92

    Chapter  Google Scholar 

  • Yamada A, Inoue T, Wiwatwitaya D et al (2005) Carbon mineralization by termites in tropical forests, with emphasis on fungus combs. Ecol Res 20:453–460

    Article  Google Scholar 

  • Zhu Y, LI J, Liu H et al (2012) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Macrotermes barneyi. Afr J Microbiol Res 6:2071–2078

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Bignell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bignell, D.E. (2018). Wood-Feeding Termites. In: Ulyshen, M. (eds) Saproxylic Insects. Zoological Monographs, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75937-1_11

Download citation

Publish with us

Policies and ethics