Skip to main content

Responses to Environmental Stressors in Developing Animals: Costs and Benefits of Phenotypic Plasticity

  • Chapter
  • First Online:
Development and Environment

Abstract

The phenotype of an animal results from interaction between genetic information and environmental influences. Embryos and larvae of most animals are freely exposed to the environment, so environmental influences may start affecting development as soon as egg deposition. A response to the environment requires information about the environment, which then triggers modifications in cell and organ function. Even in the earliest developmental stages, receptors may be functional, and a modification of receptor activity may induce physiological responses or modifications in cell proliferation. In embryos, operation of these control loops, which in adults typically are humoral or neuronal loops, is hampered by the somewhat delayed development of the nervous system. In addition, so-called critical windows may severely restrict the time of responsiveness to certain signals or stressors during development. Nevertheless, modifications in heart rate, ventilation, or metabolic activity demonstrate the existence of physiological plasticity in earliest developmental stages. In addition, differences between individuals or populations in cell number and organ size reveal a remarkable plasticity in structural development. Flexibility and plasticity certainly are beneficial because aerobic metabolism, for example, can be adjusted to changes in oxygen availability, ensuring an optimal outcome especially in an environment with variable oxygen tensions, like aquatic environments. The timing of developmental milestones like hatching can be adjusted to optimal environmental conditions in terms of oxygen availability, temperature, or humidity or in response to biotic cues from conspecifics or predators. On the other hand, any response takes time and additional energy and thus may slow down development and growth rate and thus increase the risk of predation in vulnerable larval stages. In species with thermal sex determination, the environmental influence may result in an unbalanced sex ratio of a population, which obviously may be very disadvantageous for the propagation of a population. Organ size and function may be adjusted to the current situation encountered during development and cannot be reversed if environmental conditions return to previous settings. In this case reduced fitness may be the consequence. Our discussion of these options reveals that a certain degree of phenotypic plasticity is essential and required for a species to prosper in a variable environment, and certainly many ecosystems are changing, or predicted to change, in a dramatic fashion. This flexibility derived from phenotypic plasticity does, however, come with a cost and may occasionally result in reduced fitness and disadvantageous phenotypes in the less plastic adult animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defences in animals and plants. Nature 401:60–63

    Article  CAS  Google Scholar 

  • Auld JR, Agrawal AA, Relyea RA (2009) Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc R Soc Lond B Biol Sci 277:503

    Google Scholar 

  • Bajic D, Poyatos JF (2012) Balancing noise and plasticity in eukaryotic gene expression. BMC Genomics 13:1–12

    Article  CAS  Google Scholar 

  • Barry JM (2000) Inducible defences in daphnia: responses to two closely related predator species. Oecologia 124:396–401

    Article  CAS  PubMed  Google Scholar 

  • Bavis RW, Macfarlane PM (2016) Developmental plasticity in the neural control of breathing. Exp Neurol 287:176

    Article  PubMed  Google Scholar 

  • Beaman JE, White CR, Seebacher F (2016) Evolution of plasticity: mechanistic link between development and reversible acclimation. Trends Ecol Evol 31:237–249

    Article  PubMed  Google Scholar 

  • Benard MF (2004) Predator-induced phenotypic plasticity in organisms with complex life histories. Annu Rev Ecol Evol Syst 35:651–673

    Article  Google Scholar 

  • Branum SR, Tazawa H, Burggren WW (2016) Phenotypic developmental plasticity induced by preincubation egg storage in chicken embryos (Gallus gallus domesticus). Phys Rep 4:e12712

    Google Scholar 

  • Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K, Atherton PJ (2016) Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise. Acta Physiol 216:15–41

    Article  CAS  Google Scholar 

  • Burggren WW, Mwalukoma A (1983) Respiration during chronic hypoxia and hyperoxia in larval and adult bullfrogs (Rana catesbeiana) I. Morphological responses of lungs, skin and gills. J Exp Biol 105:191–203

    Article  CAS  PubMed  Google Scholar 

  • Burggren WW, Reyna KS (2011) Developmental trajectories, critical windows and phenotypic alteration during cardio-respiratory development. Respir Physiol Neurobiol 178:13–21

    Article  PubMed  Google Scholar 

  • Callahan HS, Maughan H, Steiner UK (2008) Phenotypic plasticity, costs of phenotypes, and costs of plasticity. Ann N Y Acad Sci 1133:44–66

    Article  PubMed  Google Scholar 

  • Cattano C, Giomi F, Milazzo M (2016) Effects of ocean acidification on embryonic respiration and development of a temperate wrasse living along a natural Co2 gradient. Conserv Physiol 4:cov073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapman LG, Galis F, Shinn J (2000) Phenotypic plasticity and the possible role of genetic assimilation: hypoxia-induced trade-offs in the morphological traits of an African cichlid. Ecol Lett 3:387–393

    Article  Google Scholar 

  • Corona M, Libbrecht R, Wheeler DE (2016) Molecular mechanisms of phenotypic plasticity in social insects. Curr Opin Insect Sci 13:55–60

    Article  PubMed  Google Scholar 

  • Del Giudice M (2015) Plasticity as a developing trait: exploring the implications. Front Zool 12:1–11

    Article  Google Scholar 

  • Dewitt TJ (1998) Costs and limits of phenotypic plasticity: tests with predator-induced morphology and life history in a freshwater snail. J Evol Biol 11:465–480

    Article  Google Scholar 

  • Dewitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81

    Article  CAS  PubMed  Google Scholar 

  • Ehrenreich IM, Pfennig DW (2015) Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. Ann Bot 117:769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elberse IAM, Vanhala TK, Turin JHB, Stam P, Damme JMM, Van Tienderen PH (2004) Quantitative trait loci affecting growth-related traits in wild barley (Hordeum spontaneum) grown under different levels of nutrient supply. Heredity 93:22–33

    Article  CAS  PubMed  Google Scholar 

  • Esbaugh AJ, Ern R, Nordi WM, Johnson AS (2016) Respiratory plasticity is insufficient to alleviate blood acid-base disturbances after acclimation to ocean acidification in the estuarine red drum, Sciaenops ocellatus. J Comp Physiol B 186:97–109

    Article  CAS  PubMed  Google Scholar 

  • Esperk T, Kjaersgaard A, Walters RJ, Berger D, Blanckenhorn WU (2016) Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance? J Evol Biol 29:900–915

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Soto C, Martin OC, Wagner A (2011) Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits. BMC Evol Biol 11:1–14

    Article  Google Scholar 

  • Evans DH (2008) Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 295:R704–R713

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick BM (2012) Underappreciated consequences of phenotypic plasticity for ecological speciation. Int J Ecol 2012:1

    Article  Google Scholar 

  • Flück M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity-from gene to form and function. Rev Physiol Biochem Pharmacol 146:159–216

    Article  PubMed  CAS  Google Scholar 

  • Gorokhova E, Lehtiniemi M, Motwani NH (2013) Trade-offs between predation risk and growth benefits in the copepod Eurytemora affinis with contrasting pigmentation. PLoS One 8:E71385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton BA, Yu BD (2012) Modifier genes and the plasticity of genetic networks in mice. PLoS Genet 8:E1002644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hettyey A, Vincze K, Zsarnoczai S, Hoi H, Laurila A (2011) Costs and benefits of defences induced by predators differing in dangerousness. J Evol Biol 24:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Hiroi J, Mccormick SD (2012) New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol 184:257–268

    Article  CAS  PubMed  Google Scholar 

  • Hsu HH, Lin LY, Tseng YC, Horng JL, Hwang PP (2014) A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res 357:225–243

    Article  CAS  PubMed  Google Scholar 

  • Jones DK, Relyea RA (2015) Here today, gone tomorrow: short-term retention of pesticide-induced tolerance in amphibians. Environ Toxicol Chem 34:2295–2301

    Article  CAS  PubMed  Google Scholar 

  • Lande R (2009) Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol 22:1435–1446

    Article  PubMed  CAS  Google Scholar 

  • Leguen I, Le Cam A, Montfort J, Peron S, Fautrel A (2015) Transcriptomic analysis of trout gill Ionocytes in fresh water and sea water using laser capture microdissection combined with microarray analysis. PLoS One 10:E0139938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lillycrop KA, Burdge GC (2014) Environmental challenge, epigenetic plasticity and the induction of altered phenotypes in mammals. Epigenomics 6:623–636

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo FR, Huff C, Myllymaki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, Mcclain DA, Khan TM, Koul PA, Guchhait P, Salama ME, Xing J, Semenza GL, Liberzon E, Wilson A, Simonson TS, Jorde LB, Kaelin WG Jr, Koivunen P, Prchal JT (2014) A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet 46:951–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miner BG, Sultan SE, Morgan SG, Padilla DK, Relyea RA (2005) Ecological consequences of phenotypic plasticity. Trends Ecol Evol 20:685–692

    Article  PubMed  Google Scholar 

  • Mitchell C, Brennan RM, Graham J, Karley AJ (2016) Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection. Front Plant Sci 7:1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Moczek AP (2008) On the origins of novelty in development and evolution. BioEssays 30:432–447

    Article  PubMed  Google Scholar 

  • Moczek AP (2010) Phenotypic plasticity and diversity in insects. Philos Trans R Soc B 365:593–603

    Article  Google Scholar 

  • Moczek AP (2015) Developmental plasticity and evolution - quo vadis? Heredity 115:302–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer NT, Moberg KH (2009) Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia. Dev Biol 329:294–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller CA, Burggren WW, Tazawa H (2015) The physiology of the avian embryo. In: Scanes CG (ed) Sturkie’s avian physiology, vol 6. Elsevier, Amsterdam, pp 739–766

    Chapter  Google Scholar 

  • Murren CJ, Auld JR, Callahan H, Ghalambor CK, Handelsman CA, Heskel MA, Kingsolver JG, Maclean HJ, Masel J, Maughan H, Pfennig DW, Relyea RA, Seiter S, Snell-Rood E, Steiner UK, Schlichting CD (2015) Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelster B (2002) Developmental plasticity in the cardiovascular system of fish, with special reference to the zebra fish. Comp Biochem Physiol 133a:547–553

    Article  CAS  Google Scholar 

  • Pette D (2001) Plasticity in skeletal, cardiac, and smooth muscle historical perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 90:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Pette D, Staron RS (2001) Transitions of muscle fiber phenotypic plasticity. Histochem Cell Biol 115:359–372

    Article  CAS  PubMed  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467

    Article  PubMed  Google Scholar 

  • Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20:481–486

    Article  PubMed  Google Scholar 

  • Pigliucci M, Murren C, Mitton J (2003) Perspective: genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by? Evolution 57:1455–1464

    Article  PubMed  Google Scholar 

  • Pigliucci M, Murren C, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362

    Article  PubMed  Google Scholar 

  • Relyea RA (2002) Costs of phenotypic plasticity. Am Nat 159:272–282

    Article  PubMed  Google Scholar 

  • Relyea RA (2007) Getting out alive: how predators affect the decision to metamorphose. Oecologia 152:389–400

    Article  PubMed  Google Scholar 

  • Relyea RA, Auld JR (2005) Predator- and competitor-induced plasticity: how changes in foraging morphology affect phenotypic trade-offs. Ecology 86:1723–1729

    Article  Google Scholar 

  • Robinson BW (2013) Evolution of growth by genetic accommodation in Icelandic freshwater stickleback. Proc R Soc Lond B Biol Sci 280:20132197

    Google Scholar 

  • Rossiter M (1996) Incidence and consequences of inherited environmental effects. Annu Rev Ecol Syst 27:451–476

    Article  Google Scholar 

  • Rundle SD, Spicer JI (2016) Heterokairy: a significant form of developmental plasticity? Biol Lett 12:20160509

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheiner SM, Berrigan D (1998) The genetics of phenotypic plasticity. VIII. The cost of plasticity in Daphnia pulex. Evolution 52:368–378

    Article  PubMed  Google Scholar 

  • Scheiner SM, Holt RD (2012) The genetics of phenotypic plasticity. X. Variation versus uncertainty. Ecol Evol 2:751–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlichting CD, Wund MA (2014) Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution 68:656–672

    Article  PubMed  Google Scholar 

  • Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329:72–75

    Article  CAS  PubMed  Google Scholar 

  • Standen EM, Du TY, Larsson HCE (2014) Developmental plasticity and the origin of Tetrapods. Nature 513:54–58

    Article  CAS  PubMed  Google Scholar 

  • Tessier SN, Storey KB (2016) Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling. Biomol Concepts 7(2):69–92

    Article  CAS  PubMed  Google Scholar 

  • Traevis J (1994) Size-dependent behavioral variation and its genetic control within and among populations. In: Boake CR (ed) Quantitative genetic studies of behavioral evolution. University Of Chicago Press, Chicago, pp 165–187

    Google Scholar 

  • Turcotte MM, Levine JM (2016) Phenotypic plasticity and species coexistence. Trends Ecol Evol 31:803–813

    Article  PubMed  Google Scholar 

  • Van Buskirk J, Saxer G (2001) Delayed costs of an induced defense in tadpoles? Morphology, hopping, and development rate at metamorphosis. Evolution 55:821–829

    Article  PubMed  Google Scholar 

  • Van Buskirk J, Steiner UK (2009) The fitness costs of developmental canalization and plasticity. J Evol Biol 22:852–860

    Article  PubMed  Google Scholar 

  • Van Kleunen M, Fischer M (2005) Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol 166:49–60

    Article  PubMed  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565

    Article  Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7:118–126

    Article  Google Scholar 

  • Weiss LC, Leimann J, Tollrian R (2015) Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation. J Exp Biol 218:2918

    Article  PubMed  PubMed Central  Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York, pp 1–794

    Book  Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci 102:6543–6549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittow GC, Tazawa H (1991) The early development of thermoregulation in birds. Physiol Zool 64:1371–1390

    Article  Google Scholar 

  • Wood CM, Pelster B, Giacomin M, Sadauskas H, Almeida-Val VF, Val AL (2016) The transition from water-breathing to air-breathing is associated with a shift in ion uptake from gills to gut: a study of two closely-related erythrinid teleosts, Hoplerythrinus unitaeniatus and Hoplias malabaricus. J Comp Physiol B 186:431–445

    Article  CAS  PubMed  Google Scholar 

  • Wong DM, Shen Z, Owyang KE, Martinez-Agosto JA (2014) Insulin- and warts-dependent regulation of tracheal plasticity modulates systemic larval growth during hypoxia in drosophila melanogaster. PLoS One 9:E115297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright PA, Turko AJ (2016) Amphibious fishes: evolution and phenotypic plasticity. J Exp Biol 219:2245–2259

    Article  PubMed  Google Scholar 

  • Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Li S, Yang H, Nielsen R, Wang J, Wang J (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai Y, Lv Y, Li X, Wu W, Bo W, Shen D, Xu F, Pang X, Zheng B, Wu R (2014) A synthetic framework for modeling the genetic basis of phenotypic plasticity and its costs. New Phytol 201:357–365

    Article  PubMed  Google Scholar 

  • Zhang L, Allen J, Hu L, Caruthers SD, Wickline SA, Chen J (2013) Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 304:H246

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Lyu Y, Xu F, Bo W, Zhai Y, Zhang J, Pang X, Zheng B, Wu R (2015) A QTL model to map the common genetic basis for correlative phenotypic plasticity. Brief Bioinform 16:24–31

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Pelster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pelster, B., Burggren, W.W. (2018). Responses to Environmental Stressors in Developing Animals: Costs and Benefits of Phenotypic Plasticity. In: Burggren, W., Dubansky, B. (eds) Development and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-75935-7_5

Download citation

Publish with us

Policies and ethics